Reg. No:										
----------	--	--	--	--	--	--	--	--	--	--

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2020

Programme: M.Sc., Mathematics	Date: 14.02.2022
Course Code: 20PMAC11	Time: 10am – 1pm
Course Title: Algebra – I	Max. Marks: 60

Qn. No.	Section – A [10 x 1 = 10] Answer ALL the Questions	CO(s)	K – Level
1.	The order of the symmetric group S_3 is	CO1	K1
2.	[a] 3 [b] 6 [c] 12 [d] 4 In a group $(G,*)$, <i>a</i> is an element of order 12. Then the order of a^5 is	CO1	K2
3.	[a] 12[b] 15[c] 17[d] 19Let G be a group of order p^q where p and q are prime numbers such that $p > q$. Then G can have	CO2	K1
	 [a] almost one subgroup of order p [b] atleast one subgroup of order q [c] atleast one subgroup of order p [d] atleast one subgroup of order q 		
4.	If f is a homomorphism $f: (R, +) \to (Z, \times)$ such that $f(2) = 3$, then $f(6)$ is	CO2	K2
5.	[a] 6[b] 9[c] 18[d] 27The group P_n of all permutations of degree n is called[a] the symmetric group[b] the non-symmetric group	CO3	K1
6.	[c] transposition [d] abelian group What is the order of the normalizer of $\sigma = (1 \ 2)(3 \ 4)$ in S_6 ? [a] 8 [b] 16 [c] 24 [d] 4	CO3	K2
7.	If $O(G) = 1001$, then about G correct statements is I) only 13 - sylow subgroup is normal II) 11 - sylow subgroup 13 - sylow subgroup are normal III) all sylow subgroup are normal IV) G is non-cyclic	CO4	K1
8.	[a] I and IV [b] III [c]II and IV [d] all are correct If $O(G) = 231$, then the center of G is [a] 11 - Sylow sub group [b] 7 - Sylow sub group	CO4	K2
9.	[c] $3 - Sylow$ sub group [d] $\{e\}$ An integral domain <i>D</i> is of finite characteristic, if $\forall a \in D$, there exist <i>m</i> a positive integer such that	CO5	K1
10.	[a] $ma = 1$ [b] $ma = 0$ [c] $ma = a$ [d] $ma = a^2$ If R is a ring in which $a^4 = a$, for all $a \in R$, then [a] R is commutative [b] R is not commutative [c] Ris zero ring [d] R is a Boolean ring	CO5	K2
Qn. No. 11.a)	$\begin{array}{c} \text{Section} - B \\ \text{Answer ALL the Questions} \\ \text{Construct a Cayley table for } U(12) \end{array} $ $[5 \text{ x 4} = 20]$	CO(s) CO1	K – Level K2

	[OR]		
b)	If H and K are subgroups of G then prove that $H \cap G$ is also a subgroup of G.	CO1	K2
12.a)	Define $Aut(G)$ and prove that $Aut(G)$ is a group under function composition.	CO2	K2
,	[OR]		
b)	Show that the mapping $\phi(a + bi) = a - bi$ is an automorphism of the group		
	of complex numbers under addition. Show that ϕ preserves complex	CO2	K2
	multiplication as well.		
13.a)	If G is a finite group and $a \in G$ then show that $a^{O(G)} = e$.	CO3	K2
	[OR]		
b)	Let ϕ be a group homomorphism from G to \overline{G} . Prove that Ker ϕ is a normal	CO3	K2
	subgroup of G .		
14.a)	If $ G = p^2$ where p is prime then prove that G is Abelian.	CO4	K3
,	[OR]		
b)	Let $ G = 2p$ where p is an odd prime. Prove that G is isomorphic to Z_{2p} .	CO4	K3
15.a)	•	CO5	K3
,	Prove that the subset $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in Z \right\}$ of the ring $(M_2(Z), +, .)$ is a		
	left ideal but not a right ideal.		
	[OR]		
b)	State and prove first isomorphism theorem.	CO5	K3
Qn.	Section – C $[3 \times 10 = 30]$	CO(s)	_K –
No.	Answer Any THREE Questions		Level
16.	Prove that	CO1	K2
	(i) center of a group G is a subgroup of G		
	(ii) for any element a in G , the centralizer of a is a subgroup of G .	G 0	
17.	Let $G = SL(2, R)$ be the group of 2×2 real matrices with determinant 1 and	CO2	K3
	let <i>M</i> be any 2×2 real matrix with determinant 1; Prove that the mapping		
10	$\phi_M: G \to G$ defined by $\phi_M(A) = MAM^{-1}$ for all $A \in G$ is an isomorphism.	~~~	WO
18.			
	Let ϕ be a homomorphism from a group G to a group \overline{G} and let H be a	CO3	K3
	Let ϕ be a homomorphism from a group G to a group \overline{G} and let H be a subgroup of G . Then prove that	CO3	КЭ
	subgroup of G . Then prove that	CO3	K3
		CO3	K3
	subgroup of <i>G</i> . Then prove that (i). $\phi(G) = \{\phi(h) h \in H\}$ is a subgroup of \overline{G}	CO3	K3
	subgroup of <i>G</i> . Then prove that (i). $\phi(G) = \{\phi(h) h \in H\}$ is a subgroup of \overline{G} (ii). if <i>H</i> is normal in <i>G</i> then $\phi(H)$ is normal in $\phi(G)$	CO3	K3
	subgroup of <i>G</i> . Then prove that (i). $\phi(G) = \{\phi(h) h \in H\}$ is a subgroup of \overline{G} (ii). if <i>H</i> is normal in <i>G</i> then $\phi(H)$ is normal in $\phi(G)$ (iii). if \overline{K} is a normal subgroup of \overline{G} , then $\phi^{-1}(\overline{K}) = \{k \in G \phi(k) \in \overline{K}\}$ is a	CO3	K3
19	subgroup of <i>G</i> . Then prove that (i). $\phi(G) = \{\phi(h) h \in H\}$ is a subgroup of \overline{G} (ii). if <i>H</i> is normal in <i>G</i> then $\phi(H)$ is normal in $\phi(G)$ (iii). if \overline{K} is a normal subgroup of \overline{G} , then $\phi^{-1}(\overline{K}) = \{k \in G \phi(k) \in \overline{K}\}$ is a normal subgroup of <i>G</i> .		
19. 20.	subgroup of <i>G</i> . Then prove that (i). $\phi(G) = \{\phi(h) h \in H\}$ is a subgroup of \overline{G} (ii). if <i>H</i> is normal in <i>G</i> then $\phi(H)$ is normal in $\phi(G)$ (iii). if \overline{K} is a normal subgroup of \overline{G} , then $\phi^{-1}(\overline{K}) = \{k \in G \phi(k) \in \overline{K}\}$ is a	CO3 CO4 CO5	K3 K4 K5

20. Prove that $M_2(Z) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in Z \}$ is a non-commutative ring CO5 K5 under and addition and multiplication of matrices.

Reg. No:									
----------	--	--	--	--	--	--	--	--	--

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2020

Programme: M.Sc., Mathematics	Date: 15.02.2022
Course Code: 20PMAC12	Time: 10am – 1pm
Course Title: Analysis – I	Max. Marks: 60

Qn. No.	Section – A [10 x 1 = 10] Answer ALL the Questions	CO(s)	K – Level
1.	Extended real number system means	CO1	K1
2.	[a] $R \cup \{\infty\} \cup \{-\infty\}$ [b] $R \cup \{\infty\}$ [c] $R \cup \{-\infty\}$ [d] $R \cup \{\}$ Let $P = \{(x - a)^2 + (y - b)^2 = 1; a, b \in Q\}$ where <i>p</i> is the set of all unit circles in the complex plane with centre as rational coordinates which of the	CO1	K2
	following is true? [a] p is finite nonempty set [b] p is countable		
	[c] <i>p</i> is uncountable [d] <i>p</i> is empty		
3.	A subset of a complete metric space is complete if and only if it is	CO2	K1
4.	[a] Closed [b] Open [c] both [a] and [b] [d] neither [a] nor [b] If $< M, \rho >$ be a complete metric space and A is a closed subset of M then	CO2	K2
ч.	$A, \rho > \text{is}$	02	112
	[a] Bounded [b] complete		
	[c] connected [d] disconnected.		
5.	Let $(x) = \int_{1}^{\infty} \frac{\cos t}{x^2 + t^2} dt$. Then which of the following are true?	CO3	K1
	[a] f is bounded on R [b] f is continuous on R		
	[c] f is not defined everywhere on R [d] Both [a] and [b].		
6.	The set $\{\frac{x^2}{1+x^2} / x \in R\}$ is	CO3	K2
	[a] connected but not compact in R		
	[b] compact but not connected in R		
	[c] connected and compact in R		
_	[d] neither connected nor compact in R		
7.	The derivative of the function $f(x) = x x $ is	CO4	K1
8.	[a] $2x$ [b] $2 x $ [c] $-2x$ [d] doesn't exist If $f'(x) = 0$ for all $x \in [a, b]$ then $f(x)$ is on [a, b]	CO4	K2
0.	If $f'(x) = 0$ for all $x \in [a, b]$ then $f(x)$ is on [a,b]. [a] derivative [b] primitive [c] constant [d] identity	004	K2
9.	Non empty open interval is	CO5	K1
	[a] countable [b] not measure zero		
	[c] measure zero [d] infinite		
10.	If E_1 and E_2 are measurable subsets of [a,b] then $E_1 - E_2$ is	CO5	K2
	[a] countable [b] not measure zero		
On	[c] measure zero [d] measurable Section – B $[5 \times 4 = 20]$		K –
Qn. No.	Answer ALL the Questions	CO(s)	K – Level
11.a)	Find a rational number between two real numbers.	CO1	K2
,	[OR]		

b)	Prove that the Cartesian product of two countable set is countable.	CO1	K2
12.a)	Let E be a subset of the metric space M, then prove that neighborhood of E is open [OR]	CO2	K2
b)	Show that a set E is open if and only if its complement is closed.	CO2	K2
13.a)	If f is a continuous mappings of a compact metric space X into R^k , then prove that f is closed and bounded. [OR]	CO3	K3
b)	Show that $f(x) = \begin{cases} 2 & if \ x \neq 1 \\ 3 & if \ x = 1 \end{cases}$ has a removable discontinuous	CO3	K3
14-)	at $x = 1$.	CO4	17.1
14.a)	State and prove chain rule theorem.	CO4	K1
b)	[OR] State and prove Taylor's theorem.	CO4	K1
15.a)	If f is Continuous on [a, b] then prove that $f \in R(\alpha)$ on [a, b].	CO5	K1 K3
1010)	[OR]	000	
b)	If $f \in R[a, b]$ then prove that $f^2 \in R[a, b]$.	CO5	K3
0)	$\Pi \cap \subset \Lambda \cap (u, v)$ then prove that $\cap \subset \Lambda \cap (u, v)$.	COS	КЭ
Qn.	Section – C $[3 \times 10 = 30]$		кэ К –
,		CO(s)	
Qn.	Section – C [3 x 10 = 30] Answer Any THREE Questions . For every real $x > 0$ and every integer $n > 0$. Show that there is one and		К –
Qn. No.	Section – C [3 x 10 = 30] Answer Any THREE Questions	CO(s)	K – Level
Qn. No.	Section – C [3 x 10 = 30] Answer Any THREE Questions . For every real $x > 0$ and every integer $n > 0$. Show that there is one and only one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show that	CO(s)	K – Level
Qn. No. 16.	Section - C[3 x 10 = 30]Answer Any THREE Questions. For every real $x > 0$ and every integer $n > 0$. Show that there is one andonly one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show thati) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open .	CO(s) CO1	K – Level K3
Qn. No. 16. 17.	Section - C[3 x 10 = 30]Answer Any THREE Questions. For every real $x > 0$ and every integer $n > 0$. Show that there is one andonly one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show thati) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open .ii) for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed.	CO(s) CO1 CO2	K – Level K3 K3
Qn. No. 16.	Section - C[3 x 10 = 30]Answer Any THREE Questions. For every real $x > 0$ and every integer $n > 0$. Show that there is one and only one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show thati) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open .ii) for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed.Test whether the continuity of following problem	CO(s) CO1	K – Level K3
Qn. No. 16. 17. 18.	Section - C[3 x 10 = 30]Answer Any THREE Questions. For every real $x > 0$ and every integer $n > 0$. Show that there is one andonly one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show thati) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open .ii) for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed.	CO(s) CO1 CO2 CO3	K – Level K3 K3 K3
Qn. No. 16. 17.	Section - C[3 x 10 = 30]Answer Any THREE Questions. For every real $x > 0$ and every integer $n > 0$. Show that there is one and only one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show thati) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open .ii) for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed.Test whether the continuity of following problem	CO(s) CO1 CO2	K – Level K3 K3
Qn. No. 16. 17. 18.	Section – C [3 x 10 = 30] Answer Any THREE Questions . For every real $x > 0$ and every integer $n > 0$. Show that there is one and only one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show that i) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open . ii) for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed. Test whether the continuity of following problem $f(x) = \begin{cases} x+2 & if \ x \le -2 \\ -x-2 & if \ -2 < x < 0 \\ x+2 & if \ x \ge 0 \end{cases}$ Find the Rolle's constant for the function $f(x) = \sqrt{1-x^2}$ in $[-1, 1]$.	CO(s) CO1 CO2 CO3	K – Level K3 K3 K3
Qn. No. 16. 17. 18. 19.	Section – C [3 x 10 = 30] Answer Any THREE Questions . For every real $x > 0$ and every integer $n > 0$.Show that there is one and only one positive real y, such that $y^n = x$ this number is written as $(x)^{1/n}$ Show that i) for any collection $\{G_{\alpha}\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open . ii) for any collection $\{F_{\alpha}\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed. Test whether the continuity of following problem $f(x) = \begin{cases} x+2 & \text{if } x \leq -2 \\ -x-2 & \text{if } -2 < x < 0 \\ x+2 & \text{if } x \geq 0 \end{cases}$	CO(s) CO1 CO2 CO3	K – Level K3 K3 K3 K2

Reg. 1	No:
--------	-----

T 🔤
AV ACO WE TRUET

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2020

Programme: M.Sc., Mathematics	Date: 16.02.2022
Course Code: 20PMAC13	Time: 10am – 1pm
Course Title: Ordinary Differential Equations	Max. Marks: 60

Qn.	Section – A $[10 \times 1 = 10]$	CO(s)	K – Level
No. 1.	Answer ALL the Questions What is the order and degree of differential equation	CO1	K1
1.		COI	IX1
	$\frac{d^2 y}{dx^2} = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{3/4}?$		
•	[a] 2,4 [b] 4,2 [c] 2,2 [d] 4,3	901	
2.	What is the Lipschitz constant of the function $f(x, y) = 4x^2 + y^2$ on R for	CO1	K2
	$ x \le 1, y \le 1?$		
	[a] 2 [b] 3 [c] 4 [d] 0		
3.	The solution of the differential equation is of the form $y = px + p^n$ is	CO2	K1
4	[a] $y = cx + c^n$ [b] $y = Px$ [c] $y = c^n$ [d] $y = Px + P^n + c$	CO2	WO.
4.	Which curve touches each member of one parameter family of curves?	CO2	K2
5.	[a] trajectories [b]envelope [c]developable [d] edge of regression The complementary function of $(D^2 - 8D + 16)y = e^{4x}$ is	CO3	K1
5.		005	IX1
	[a] $\frac{x^2}{2}e^{4x}$ [b] $Ae^{4x} + Be^{-4x}$ [c] $A\cos 4x + B\sin 4x$ [d] $(Ax + B)e^{4x}$		
6.	The particular integral of $x^2y'' - xy' + y = 2logx$ is	CO3	K2
_	[a] $2x + 4$ [b] $2logx + 4$ [c] $2e^{x} + 4$ [d] $-2logx + 4$		
7.	What is the Wronskian value of e^x and e^{2x} ?	CO4	K1
0	[a] e^x [b] e^{2x} [c] e^{3x} [d] e^{4x}	CO4	КЭ
8.	The given functions f and g are independent in the differential equation, then the wronglying value of the above functions is	CO4	K2
	the wronskian value of the above functions is $[a] \ge 0$ $[b] \le 0$ $[c] = 0$ $[d] \ne 0$		
9.	The collection of all eigenvectors of a function is known as	CO5	K1
2.	[a] eigenspace [b] spectrum [c] eigenfunctions [d] radiusfunction	000	
10.	The eigen values of the Strum liouville's problem are	CO5	K2
	[a] zero [b] non negative [c] imaginary [d] real		
Qn.	Section $-B$ [5 x 4 = 20]	CO(s)	K –
No.	Answer ALL the Questions		Level
11.a)	Solve the differential equation $\frac{d^2y}{dx^2} = x^2 \frac{dy}{dx} + x^4 y$ where	CO1	K2
	$y = 5$ and $\frac{dy}{dx} = 1$, when $x = 0$.		
	[OR]		
b)	Explain Picard's iterative method	CO1	K2
12.a)	Find the singular solution of the differential equation	CO2	K2
	$xp^2 - (y - x)p - y = 1$	002	112
• .	[OR]	965	
b)	Solve the differential equation $y = px + p - p^2$	CO2	K2
13.a)	Solve the differential equation	CO3	K2

	$x^{4}\left(\frac{d^{4}y}{dx^{4}}\right) + 6x^{3}\left(\frac{d^{3}y}{dx^{3}}\right) + 4x^{2}\left(\frac{d^{2}y}{dx^{2}}\right) - 2x\left(\frac{dy}{dx}\right) - 4y = 2\cos\left(\log x\right)$ [OR]		
b)	Solve the differential equation	CO3	K2
	$(x^4D^3 + 2x^3D^2 - x^2D + x)y = 1.$	GO 4	
14.a)	Solve the differential equation $y_2 + y = cosec x$. [OR]	CO4	K3
b)	Use the variation of parameters method show that solution of equation $\frac{d^2y}{dx^2}$ +	CO4	K3
	$k^2 y = \phi(x)$ satisfying the initial condition $y(0) = 0$; $y' = 0$ is		
	$y(x) = \frac{1}{k} \int_0^x \phi(t) sink(x-t) dt$		
15.a)	Find the eigen values and eigen function of Strum-liouville problem π^{π}	CO5	K3
	$X'' + \lambda X = 0 \ X(0) = 0, \ X'(\frac{\pi}{2}) = 0 \ .$		
1 \	[OR]	005	WO.
b)	Prove that corresponding to each eigenvalue of Strum liouville problem there	CO5	K3
,			110
Qn.	exist just one linearly independent eigenfunctions.		К-
Qn. No.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions	CO(s)	
-	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions		K –
No.	exist just one linearly independent eigenfunctions. Section $-C$ [3 x 10 = 30]	CO(s)	K – Level
No.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = 1$	CO(s)	K – Level
No. 16. 17.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = cos px sin y + p$.	CO (s) CO1 CO2	K – Level K2 K3
No. 16.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = cos px sin y + p$. Solve Legendre's equation $\frac{d^3y}{dx^3} - (\frac{4}{3})(\frac{d^2y}{dx^2}) + (\frac{5}{x^2})(\frac{dy}{dx}) - (\frac{2y}{x^3}) = 1$.	CO (s) CO1	K – Level K2
No. 16. 17.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = cos px sin y + p$. Solve Legendre's equation $\frac{d^3y}{dx^3} - (\frac{4}{3})(\frac{d^2y}{dx^2}) + (\frac{5}{x^2})(\frac{dy}{dx}) - (\frac{2y}{x^3}) = 1$. Using the method of variation of parameters solve	CO (s) CO1 CO2	K – Level K2 K3
No. 16. 17. 18.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = cos px sin y + p$. Solve Legendre's equation $\frac{d^3y}{dx^3} - (\frac{4}{3})(\frac{d^2y}{dx^2}) + (\frac{5}{x^2})(\frac{dy}{dx}) - (\frac{2y}{x^3}) = 1$.	CO(s) CO1 CO2 CO3	K – Level K2 K3 K3
No. 16. 17. 18.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = cos px sin y + p$. Solve Legendre's equation $\frac{d^3y}{dx^3} - (\frac{4}{3})(\frac{d^2y}{dx^2}) + (\frac{5}{x^2})(\frac{dy}{dx}) - (\frac{2y}{x^3}) = 1$. Using the method of variation of parameters solve $(\frac{d^2y}{dx^2}) - 2(\frac{dy}{dx}) + y = x e^x sin x$ with $y(0) = 0$ and $(\frac{dy}{dx})_{x=0} = 0$. Find the eigen values and eigen function of Strum-liouville problem	CO(s) CO1 CO2 CO3	K – Level K2 K3 K3
No. 16. 17. 18. 19.	exist just one linearly independent eigenfunctions. Section – C [3 x 10 = 30] Answer Any THREE Questions Find the third approximation of the solution of the equation $\frac{dy}{dx} = z \frac{dy}{dx} = x^3(y + z)$ by Picard's method, $y = 1$ and $z = \frac{1}{2}$ when $x = 0$. Find the general and singular solution of equation $sin px cosy = cos px sin y + p$. Solve Legendre's equation $\frac{d^3y}{dx^3} - (\frac{4}{3})(\frac{d^2y}{dx^2}) + (\frac{5}{x^2})(\frac{dy}{dx}) - (\frac{2y}{x^3}) = 1$. Using the method of variation of parameters solve $(\frac{d^2y}{dx^2}) - 2(\frac{dy}{dx}) + y = x e^x sin x$ with $y(0) = 0$ and $(\frac{dy}{dx})_{x=0} = 0$.	CO(s) CO1 CO2 CO3 CO4	K – Level K2 K3 K3 K4

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2020

Programme: M.Sc., Mathematics	Date: 17.02.2022
Course Code: 20PMAC14	Time: 10am – 1pm
Course Title: Numerical Analysis	Max. Marks: 60

Qn. No.	Section – A [10 x 1 = 10] Answer ALL the Questions	CO(s)	K – Level
1.	The formula $x_{k+1} = x_k - \frac{f_k}{f_k} - \frac{1}{2} \frac{f_k^2}{f_k^3} f_k''$ is used in method.	CO1	K1
2.	[a] secant b] Regula-Falsi [c] Chebyshev [d] bisection What is the value of Δq , if $P_3(x) = x^3 + x^2 - x + 2 = 0$ with $p_0 = -0.9, q_0 = 0.9$ by using Bairstow method?	CO1	K2
3.	[a] 0.1047 [b] $- 0.1047$ [c] 0.1031 [d] $- 0.1031$ If $A = -A^{T}$ then the real matrix A is [a] Symmetric [b] Skew symmetric	CO2	K1
4.	[c] Orthogonal [d] Triangular The matrix $A = \begin{bmatrix} -13 & -4 \\ -4 & 3 \end{bmatrix}$ is	CO2	K2
5.	[a] positive definite[b] semi positive definite[c] negative definite[d] semi negative definiteIn Lagrange linear interpolating polynomial the value of $l_0(x)$ is	CO3	K1
6.	[a] $\frac{x+x_1}{x_0+x_1}$ [b] $\frac{x-x_1}{x_0+x_1}$ [c] $\frac{x-x_1}{x_0-x_1}$ [d] $\frac{x_1-x}{x_1-x_0}$ The value of x if $x_0 = 0.6$, n = 2.6 and h = 0.2. [a] 12 [b] 1.2 [c] 1.12 [d] 1.22	CO3	K2
7.	The approximation may further deteriorate as the order ofincreases. [a]Derivative [b] Divide [c] Converge [d] Diverges	CO4	K1
8.	Trapezoidal rule gives exact value of the integral when the integrand is a	CO4	K2
9.	[a] linear function[b] quadratic function[c] cubic function[d] polynomial of any degreeIn the second order Runge-kutta method the slope of K_1 is[a] $hf(t, u)$ [b] $h + f(t, u)$ [a] $hf(t, u)$ [b] $h + f(t, u)$	CO5	K1
10.	[a] $hf(t_j, u_j)$ [b] $h + f(t_j, u_j)$ [c] $h - f(t_j, u_j)$ [d] $f(t_j, u_j)$ What is the percentage relative error if = 0.67, $u^* = 0.66$?	CO5	K2
Qn. No.	[a] 1.5925 [b] 1.4925 [c] 1.3925 [d] 0 Section – B [5 x 4 = 20] Answer ALL the Questions	CO(s)	K – Level
11.a)	Perform two iterations of the Chebyshev method to find an approximate value of $\frac{1}{7}$, with initial approximation as $x_0 = 0.1$.	CO1	K2
	$rac{1}{7}$, with initial approximation as $x_0 = 0.1$. [OR]		
b)	Performone iteration of the Bairstow method to find the smallest positive root of the equation $f(x) = x^3 + x^2 - x + 2 = 0p = -0.9, q = 0.9$.	CO1	K2
12.a)	If A is strictly diagonally dominant matrix, then show that the Jacobi iteration scheme converges for any initial starting vector. [OR]	CO2	K2

- b) Perform one iteration to find the solution of the system of equations
 - $\begin{bmatrix} 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$
 - $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 5 & 2 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_2 \\ x_{3-} \end{bmatrix} = \begin{bmatrix} -6 \\ -4 \end{bmatrix}$ by using Jacobi iteration method. CO2 K2
- 13.a) Obtain the piecewise quadratic interpolation polynomial for the function CO3 K3 f(x) defined on the interval [-3, -1] by the data.

x	-3	-2	-1	1	3	6
f(x)	369	222	171	165	207	990

Calculate the approximate value of f(-2.5).

b) Calculate the value of f(1.5) by using quadratic spline interpolation with CO3 K3 M(0) = f''(0) = 0 for the given data.

x	0	1	2
f(x)	1	2	33

14.a) Find the Jacobian matrix for the system of equations $f_1(x, y) = x^2 + xy^2 - CO4$ K2 $y^3 = 0$ and $f_2(x, y) = xy + 5x + 6y = 0$ at the points (1,2)and (0.5,1). [OR]

b) Find the value of I =
$$\int_0^1 \frac{dx}{1+x^2}$$
 using the Simpson's rule.
5.a) Using the Euler method to calculate the values of CO5 K3

15.a) Using the Euler method to calculate the values of CO5 K
$$u(0.2)$$
 and $u(0.4)$ numerically the initial value problem $u' = -2tu^2$, $u(0) = 1$ with $h = 0.2$ on the interval [0, 1].

b) Calculate the value of y(0.1) Runge-Kutta method of third order given that CO5 K3 $u' = u^2 + ut$, u(1) = 1.

Qn.

Section – C $[3 \times 10 = 30]$ CO(a) K –

No.	Answer Any THREE Questions	CO(s)	Level
16.	Determine all the roots of the polynomial $x^3 - 6x^2 + 11x - 6 = 0$ by using	CO1	K3
	Graeffe's root squaring method.		
17.		CO2	K3
	Determine all the eigen values of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$ using the		
	Jacobi method. Iterate till the third rotation.	~ ~ ~	
18.	$S_3(x)$ is the piecewise cubic Hermite interpolating approximant of $f(x) =$	CO3	K5
	sinxcosx in the abscissas 0,1,1,5,2,3. Estimate the errormax _{$0 \le x \le 3$} $ f(x) - f(x) = 1$		
	$S_{3}(x)$.		
19.	Solve the integral I = $\int_{-1}^{1} (1 - x^2)^{3/2} \cos x dx$, using the Gauss-Chebyshev	CO4	K3
	1 point 2 point and 2 point quadrature rules		

1-point, 2-point and 3-point quadrature rules. 20. Solve the initial value problem CO5 K4 $u' = -2tu^2, u(0) = 1$ with h = 0.2 on the interval [0, 0.4] by using the P - C method $P: u_{j+1} = u_j + \frac{h}{2} (3u'_j - u'_{j-1})$ C: $u_{j+1} = u_j + \frac{h}{2} (u'_{j+1} + u'_j)$, and also estimate $P(EC)^m$ E, m = 2 -----

Reg.	No:
nog.	1,0.

AV GOD WIL THUS

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2020

Programme: M.Sc., Mathematics	Date: 18.02.2022
Course Code: 20PMAC15	Time: 10am – 1pm
Course Title: Integral Equations	Max. Marks: 60

Qn. No.	Section – A [10 x 1 = 10] Answer ALL the Questions	CO(s)	K – Level
1.	The type of integral equation	CO1	K1
	$\phi(x)y(x) = f(x) + \lambda \int_a^b k(x,t)y(t)dt$ where $\phi(x), f(x)$ and $k(x,t)$ are		
	known functions, a and b are known constant and λ is a known parameter, is		
	a [a] linear integral equation of Volterra type		
	[b] linear integral equation of Fredholm type		
	[c] non-linear integral equation of Volterra type		
2.	[d] non-linear integral equation of Fredholm type The solutions corresponding to eigen values of λ can be expressed as	CO1	K2
۷.		COI	κ <i>z</i>
	[a] sum of eigenfunctions [b] difference of eigenfunctions		
3.	[c] arbitrary multiples of eigenfunctions [d] product of eigenfunctions	CO2	K1
5.	The solution of the integral equation $y(x) = \sin x - \frac{x}{4} + \frac{1}{4} \int_{0}^{\frac{\pi}{2}} xty(t) dt$ is	02	K1
	$\underbrace{[a]}_{x(x)} = a a x [b]_{x(x)} = a i x [a]_{x(x)} = t a x [d]_{x(x)} = 0$		
4.	[a] $y(x) = \cos x$ [b] $y(x) = \sin x$ [c] $y(x) = \tan x$ [d] $y(x) = 0$ The initial value problem corresponding to the integral equation $y(x) = 1 + 1$	CO2	K2
	$\int_0^x y(t) dt \text{ is } \underline{\qquad}.$		
	[a] $y' - y = 0$, $y(0) = 1$ [b] $y' + y = 0$, $y(0) = 0$		
~	[c] $y' - y = 0, y(0) = 0$ [d] $y' + y = 0, y(0) = 1$	002	17.1
5.	For the homogeneous Fredholm integral equation $\phi(x) = \lambda \int_0^1 e^{x+t} \phi(t) dt$ a	CO3	K1
	non-trivial solution exists, then the value of λ is [a] $\lambda = 2/e - 1$ [b] $\lambda = 1/e^2 + 1$		
	[a] $\lambda = 2/e^{-1}$ [b] $\lambda = 1/e^{-1}$ [c] $\lambda = 1/e^{-1}$ [d] $\lambda = 2/e^{2} - 1$		
6.	If λ_1, λ_2 be the eigen values and f_1 , f_2 be the corresponding eigen functions	CO3	K2
	for the homogeneous integral equation $y(x) = \lambda \int_0^1 (2xt + 4x^2)y(t)dt$, then		
	$\mathbf{J}_{0} = \mathbf{J}_{0} $		
	·		
	[a] $\lambda_1 = \lambda_2$ [b] $\lambda_1 \neq \lambda_2$ [c] either a or b. [d] both a and b.		
7.	Let $\emptyset(x)$ be the solution of $\int_0^x e^{x-t} \emptyset(t) dt = x, x > 0$ then $\emptyset(1)$ equals		
	[a] -1 [b] 0 [c] 1 [d] 2	CO4	K1
8.		CO4	K2
0.	Consider the integral equation $y(x) = x^3 + \int_0^x \sin(x - t)y(t)dt$, $x \in [0, \pi]$ then the value of $y(1)$ is	0.04	112

9.	[a] $\frac{19}{20}$ [b] 1 [c] $\frac{17}{20}$ [d] $\frac{21}{20}$ The resolvent kernel R(x,t, λ) for the volterra integral equation $\phi(x) = x + \lambda \int_0^x \phi(x) ds$ is	CO5	K1
10.	[a] $e^{\lambda(x+t)}$ [b] $e^{\lambda(x-t)}$ [c] λe^{x+t} [d] $e^{\lambda xt}$ Using the method of successive approximations, the solution of the integral equation $y(x) = 1 + \int_0^x (x-t)y(t)dt$, $y_0(x) = 1$ is	CO5	K2
Qn. No. 11.a)	[a] $y(x) = sinx$ [b] $y(x) = cosx$ [c] $y(x) = coshx$ [d] $y(x) = sinhx$ Section – B [5 x 4 = 20] Answer ALL the Questions Find the solution of the Fredholm integral equation $y(x) + \int_0^1 x(e^{xt} - 1)y(t)dt = e^x - x; y(x) = 1.$	CO(s) CO1	K – Level K2
b)	[OR] Explain Volterra integral equation and its kind.	CO1	K2
12.a)	Convert the following differential equation into integral equation $y'' + y = 0, y(0) = 0, y'(0) = 0.$	CO2	K2
b)	[OR] Convert the integral equation into differential equation		
0)	$y(x) = \int_0^x (x-t)y(t)dt - x \int_0^1 (1-t)y(t)dt.$	CO2	K2
13.a)	Find the homogeneous Fredholm integral equation of the second	CO3	K2
	kind $y(x) = \lambda \int_0^{2\pi} \sin(x+t) y(t) dt.$		
1 \	[OR]	001	WO
b)	Find the eigenvalues and the corresponding eigenfunctions of the homogeneous integral equation $y(x) = \lambda \int_0^1 (2xt - 4x^2)y(t)dt$.	CO3	K2
14.a)	Solve $y(x) = f(x) + \lambda \int_0^1 xt y(t) dt$.	CO4	K3
1)	Solve $y(x) = f(x) + \lambda \int_0^\infty x t y(t) dt$. [OR]		
b)	Solve the integral equation $y(x) = x + \lambda \int_0^1 (4xt - x^3) y(t) dt$.	CO4	K3
15.a)	Determine the resolvent kernel for the Fredholm integral equation $K(x, t) = (1 + x)(1 - t); a = 0$, $b = 1$.	CO5	K3
b)	[OR] Using iterative method ,solve $y(x) = f(x) + \lambda \int_0^1 e^{x-t} y(t) dt$.	CO5	K3
Qn.	Section – C $[3 \times 10 = 30]$		K –
No.	Answer Any THREE Questions	CO(s)	Level
16.	Examine the function $y(x) = e^x$ is a solution of the integral equation	CO1	K3
17	$y(x) + \lambda \int_0^1 \sin xt \ y(t)dt = 1$	CO2	V2
17.	Modify the integral equation into differential equation $y(x) = 1 - x - 4 \sin x + \int_0^x [3 - 2(x - t)y(t)dt]$.	CO2	K3
18.	Determine the eigenvalues and eigenfunctions of the homogeneous equation	CO3	K3
	$y(x) = \lambda \int_0^1 k(x,t) y(t) dt , \text{ where } K(x,t) = \begin{cases} x(t-1), 0 \le x \le t \\ t(x-1), t \le x \le 1 \end{cases}$		
19.	Evaluate the Fredholm integral equation of the second kind	CO4	K5
	$y(x) = x + \lambda \int_{0}^{1} (xt^{2} + x^{2}t)y(t)dt.$		
20.	Evaluate $y(x) = x + \int_0^x (t-x)y(t)dt$.	CO5	K4

Evaluate $y(x) = x + \int_0^x (t-x)y(t)dt$. 20.

Reg.					
No:					

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

Programme :M.Sc., MATHEMATICS	Date: 03.02.2022
Course Code : 20PMAC21	Time: 2:00 PM – 5:00PM
Course Title : Algebra - II	Max. Marks 60

Qn. No.	Section – A (10 * 1 = 10 Marks) Answer ALL the Questions	CO(s)	K – Level
1.	If an ideal U of a ring R contain a unit of R, then	CO1	K1
	[a] $U = R$ [b] $U \neq R$ [c] $U < R$ [d] $U < R$		
2.	Which of the following is not a field?	CO1	K2
	[a] $\frac{Z}{2Z}$ [b] $\frac{Z}{3Z}$ [c] $\frac{Z}{4Z}$ [d] $\frac{Z}{5Z}$		112
	If $f(x)$ and $g(x)$ are primitive polynomials, then is a primitive		
3.	polynomials.	CO2	K1
5.	[a] $f(x)/g(x)$ [b] $f(x) = g(x)$	002	IXI
	$\begin{bmatrix} a \\ f(x) - g(x) \end{bmatrix} \begin{bmatrix} b \\ f(x) - g(x) \end{bmatrix}$		
	If $f(x)$, $g(x)$ are in $R[x]$, then $c(fg) = $		
4.	[a] $c(g)c(f)$ [b] $c(f)c(g)$	CO2	K2
	$[c] cf(cg) \qquad [d] c(fg)$		
	If L is a finite extension of K and if K is a finite extension of F , then		
5.	·	CO3	K1
	[a] L is a Finite extension of F [b] K is a finite extension of F	000	
	[c] F is a finite extension of K [d] None of these		
	If $a \in K$ is algebraic of degree <i>n</i> over <i>F</i> , then		
6.	[a] $[F(a): F] < n$. [b] $[F(a): F] > n$	CO3	K2
	[c] $[F(a): F] = n$. [d] $[F(a): F] \ge n$		
	Let K be a field and let G be a finite subgroup of the multiplicative group of		
7.	non-zero elements of K. Then G is	CO4	K1
	[a]Cyclic group [b] Field		
	[c] Isomorphic [d] None of these		
8.	If K in algebraic of degree n over F, then $[F(a): F] =$	CO4	K2
	[a] 1 [b] 0 [c] 2 <i>n</i> [d] <i>n</i>		
	K is a normal extension of F is K is a finite extension of F such that F is		
9.	the of G (K, F)	CO5	K1
	[a]subfield [b] automorphism		
10	[c] fixed field [d] subgroup	007	WO
10.	The fixed field of S_n they form a subfield of $F(X_1, \dots, X_n)$ called the	CO5	K2

	of symmetric rational function. [a] group [b] subfield. [c] field [d] ring		
Qn.	Section – B $(5 * 4 = 20 \text{ Marks})$	CO(s)	K –
No. 11.a)	Answer ALL the Questions Let <i>R</i> be Euclidean ring. Then prove that any two elements <i>a</i> and <i>b</i> in <i>R</i> have greatest common division <i>d</i> . Also prove that $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$. [OR]	CO1	Level K2
11.b)	If p is a prime number of the form $4n + 1$ then solve the congruence $x^2 \equiv -1 \pmod{p}$.	CO1	K2
12.a)	State and prove Gauss Lemma. [OR]	CO2	K2
12.b)	If $a \in R$ is an irreducible element and a/bc , then prove that a/b or a/c .	CO2	K2
13.a)	If <i>L</i> is a finite extension of <i>F</i> and <i>K</i> is a subfields of <i>L</i> which contains <i>F</i> , then prove that $[K:F] [L:F]$.	CO3	K2
13.b)	[OR] Prove that the sum of two algebraic integers is an algebraic integer.	CO3	K2
14.a)	Prove that for any $f(x), g(x) \in F[x]$ and any $\alpha \in F$, 1. $(f(x) + g(x))' = f'(x) + g'(x)$ 2. $(\alpha f(x))' = \alpha f'(x)$ 3. $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$.	CO4	K3
	3. $(f(x)g(x)) = f(x)g(x) + f(x)g(x)$. [OR]		
14.b)	Show that any field of characteristic zero is perfect.	CO4	K3
15.a)	Prove that $G(K, F)$ is a subgroup of the group of all automorphisms of K. [OR]	CO5	K3
15.b)	If K is finite extension of F, then prove that $G(K:F)$ is a finite group and its order $O(G(K:Q))$ satisfies $O(G(K:F)) \leq [K:F]$.	CO5	K3
Qn. No.	Section – C (3 * 10 = 30 Marks) Answer ANY 3 Questions	CO(s)	K – Level
16.	Prove that if R is a commutative ring with unit element and M is an ideal of R, then M is a maximal ideal of R if and only if R/M is a field.	CO1	K2
17.	State and prove the Eisenstein Criterion.	CO2	K2
18.	Prove that the element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F .	CO3	K3
19.	Prove that any finite extension of field of characteristic 0 is simple extension.	CO4	K3
20.	State and prove fundamental theorem of Galois theory.	CO5	K4

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

Programme: M.Sc., MATHEMATICS	Date: 04.02.2022
Course Code: 20PMAC22	Time: 2 pm To 5 pm
Course Title: Analysis - II	Max. Marks: 60

Qn.	S	ection – A $[10 x 1 = 10]$	CO(s)	K –
No.	Answer Al	LL the Questions	CO(8)	Level
1.	The sequence $a_n = \{1, 1, 1,\}$ conv	erges to	CO1	K1
	[a] ∞	[b] 1		
	[c] n	[d] 0		
2.	The series $\sum \frac{(-1)^n}{n}$ is conditionally _		CO1	K2
	[a] Monotonic	[b] Divergent		
	[c] Convergent	[d] Both a and b		
3.	If every uniformly converges sequen	nce is also	CO2	K1
	[a] Converges	[b] Diverges		
	[c] Pointwise converges	[d] Bounded		
4.	For every interval $[a, a]$ there is a	sequence of real polynomials P_n such that	CO2	K2
	$P_n(x) = \underline{\qquad}.$			
	[a] 0	[b] 1		
	[c] ∞	[d] -1		
5.	Every member of an equicontinuou	is family is	CO3	K1
	[a] Continuous	[b] Discontinuous		
	[c] equi continuous	[d] uniform continuous		
6.	If K is compact if $f_n \in l(k)$ for n	$f = 1,2,3,\dots$ and if $\{f_n\}$ is pointwise	CO3	K2
	bounded and equi continuous on K	then $\{f_n\}$ is a on K .		
	[a] Uniformly bounded	[b] Uniformly continuous		
	[c] Equicontinuous	[d] Bounded		
7.	A mapping A of a vector space X	into a vector space Y is said to be a	CO4	K 1
	[a] Spans	[b] Linear transformation		
	[c] subspace	[d] Invertible		
8.	The uniqueness is a triviality, for if	$\varphi(x) = x$ and $\varphi(y) = y$, then	CO4	K2

	[a] $d(x, y) \le c d(x, y)$ [b] $d(x, y)$	$y) \ge c \ d(x, y)$		
	[c] $d(x, y) < c d(x, Y)$ [d] $d(x, y)$	$y) > c \ d(x, y)$		
9.	If $A \in L(\mathbb{R}^n)$ then A is invertible if and only if rates	ank of A is	CO5	K1
	[a] 1 [b] 2			
	[c] n [d] n^2			
10.	If P is a projection in X, then every element x of	X has unique solution of the	CO5	K2
	form where $x_1 \in R(P)$, $x_2 \in N(P)$).		
	[a] $x = x_1 + x_2$ [b] $x = x_1 + x_2$	$x_1 - x_2$		
	[c] $x = x_1 \cdot x_2$ [d] None	of these		
Qn.	Section – B	[5 x 4 = 20]	CO(s)	К –
No.	Answer ALL the Ques	tions	CO(8)	Level
11.a)	If $\{k_n\}$ is a sequence of compact sets in X such t	hat $K_n \supset K_{n+1}$ ($n =$	CO1	K2
	1, 2,) and if $\lim_{n\to\infty} diam K_n = 0$, then prove	that $\bigcap_{n=1}^{\infty} K_n$ consists of		
	exactly one point.			
	[OR]			
b)	Prove that Cauchy sequence in a metric space is	bounded.	CO1	K2
12.a)	Show that a convergent series of continue	ous functions may have a	CO2	K2
	discontinuous sum.			
	[OR]			
b)	Prove that limit sequence of integrable function	-	CO2	K2
13.a)	If K is a compact metric space, if $f_n \in C(K)$		CO3	K2
	converges uniformly on K , then prove that $\{f_n\}$ is	s equi-continuous on <i>K</i> .		
	[OR]			
b)	Let B be the uniform closure of an algebra A	of bounded functions. Then	CO3	K2
	prove that B is uniformly closed algebra.	- m - h>	<i></i>	
14.a)	Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, $B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $C \in L(\mathbb{R}^n, \mathbb{R}^m)$	R^m , R^{κ}). Then prove that	CO4	K3
	a) For $x \in R^n$, $ Ax \le A x $,			
	b) If $ Ax \le \lambda x $ for all $x \in \mathbb{R}^n$, then $ A $	$\leq \lambda, \lambda \in R.$		
	[OR]			
b)	Suppose f maps a convex open set $E \subseteq R^n$ into	R^m , f is differentiable in E	CO4	K3
	and there is a real number M such that $ f'(x) $	$\leq M$ for every $x \in M$. Then		
	prove that $ f(b) - f(a) \le M b - a $ for all $a \in$	$E, b \in E.$		
15.a)	Suppose X and Y are vector spaces and $A \in L$	(X, Y). Prove that $R(A)$ is a	CO5	K3
	vector space in Y.			

b) Suppose *f* is defined in an open set $E \subset R^2$, suppose that $D_1 f, D_{21} f$ and $D_2 f$ CO5 K3 exist at every point of *E*, and $D_{21} f$ is continuous at some point $(a, b) \in E$.

Qn.	Section – C [3 x 1	0 = 30]	$\mathbf{CO}(\mathbf{a})$	K –
No.	Answer ANY THREE Questions		CO(s)	Level
16.	Prove that <i>e</i> is irrational.		CO1	K2
17.	Prove that a sequence of functions $\{f_n\}$ converges point wise to f with	respect	CO2	K2
	to metric of $\mathcal{C}(X)$ if and only if $f_n \to f$ uniformly on X.			
18.	State and Prove Stone Weierstrass Theorem.		CO3	K3
19.	State and prove inverse function theorem.		CO4	K3
20.	a) If P is a projection in X, then prove that every element $x \in X$ has	unique	CO5	K4
	representation of the form $x = x_1 + x_2$ where $x_1 \in R(P)$ and $x_2 \in N(P)$	²).		
	b) If X is a finite dimensional vector space and if X_1 is a vector space	e in X_1 ,		
	then prove that there exists a projection <i>P</i> in <i>X</i> with $R(P) = X_1$.			

Reg. No:

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION - NOVEMBER 2021

Pr Co Co	2022 To 5 pm :: 60	l			
Qn. No.	Sect Answer AI	[10 x 1 = 10]	CO(s)	K – Level	
1.	Which of the following is an example	CO1	K1		
	differential equation?				
	[a] Lagrange's partial differential e	quation			
	[b] Clairaut's partial differential eq	uation			
	[c] One-dimensional wave equation	1			
	[d] One-dimensional Heat equation				
2.	The solution of the Lagrange's part	ial differential equation x	p + yq = z	CO1	K2
	is				
	[a] f(x/y, z/y) = 0	[b] f(y/x, y/z) = 0			
	[c]f(x/y,y/z) = 0	[d] f(x,y) = 0			
3.	Which of the following represents t	he equation $U_{xx} + U_{yy} =$	U_z is	CO2	K1
	[a] Parabolic	[b] Hyperbolic			
	[c] Elliptic	[d] None of these above			
4.	The first canonical form of the PDE	E of $W_{\xi\xi} + b(\xi,\eta)W_{\xi\eta}$	+	CO2	K2
	$c (\xi, \eta) W_{\eta\eta} = \phi (\xi, \eta, W, W_{\xi})$				
	$\psi(\xi,\eta,W,W_{\xi},W_{\eta})$ is				
	[a] a = c = 0	[b] b = 0 , $c = -a$			
	[c] a = b = 0	[d] b = 0 , $c = a$			
5.	The singular solution of $y = px + a(1 + p^2)^{1/2}$ is				K1
	[a] Parabola	[b]Hyperbola			
	[c] Circle	[d] Straight line			

6.	Consider the assertion (A) and reason (R) given below:	CO3	K2
	Assertion(A): $y = 0$ is the singular solution of the differential		
	equation $9yp^2 + 4 = 0$ where $p = \frac{dy}{dx} \frac{(x-c)^2}{a}$		
	Reason(R): $y = 0$ occurs both in <i>p</i> -discriminant and <i>c</i> -discriminant		
	obtained from its general solution $y^3 + (x + c)^2 = 0$ of $9yp^2 + 4 = 0$		
	[a] Both A and R are true and R is correct explanation of A		
	[b] Both A and R are true and R is not correct explanation of A		
	[c] A is true but R is false		
	[d] A is false but R is true		
7.	If $u(x,t)$ satisfy the partial differential equation $(\partial^2 u/\partial t^2) = 4(\partial^2 u/\partial x^2)$	²), CO4	K 1
	then $u(x, t)$ can be of the form		
	[a] $u(x,t) = f(x-2t) + g(x+2t)$		
	[b] $u(x,t) = f(x^2 - 4t^2) + g(x^2 + 4t^2)$		
	[c] $u(x,t) = f(2x - 4t) + g(x+2t)$		
	[d] u(x,t) = f(2x - t) + g(2x + t)		
8.	If $u = u(x, t)$ be the solution of the Cauchy problem $\frac{\partial u}{\partial t} + \left(\frac{\partial u}{\partial x}\right)^2 = 1$, $x = R, t > 0$. Then	€ ^{CO4}	K2
	[a] $u(x, t)$ exists for all $x \in R$, and $t > 0$.		
	[b] $[u(x,t), 0] \rightarrow \infty$ as $t \rightarrow \infty$ for some $t > 0$ and $x \neq 0$		
	[c] $u(x,t) > 0$ for all $x \in R$ and for all $t < \frac{1}{4}$		
	[d] $u(x,t) > 0$ for all $x \in R$ and $0 < t < 1/4$		
9.	Let $u(x,t) = e^{iwx} v(t)$ with $v(0) = 1$ be a solution to $\frac{\partial u}{\partial t} = \frac{\partial^3 u}{\partial x^3}$. The	en CO5	K1
	$\underbrace{[a] u(x,t) = e^{iw(x-w^2t)}}_{[b] u(x,t) = e^{iwx-w^3t}}$		
	[c] $u(x,t) = e^{iw(x+w^2t)}$ [d] $u(x,t) = e^{iw^3(x-t)}$		
10.	Which one of the following is true for the wave equation:	CO5	K2
	$(\partial^2 u / \partial x^2) + (\partial^2 u / \partial y^2) + (\partial^2 u / \partial z^2)$		
	$= (1/c^2) \times (\partial^2 u / (\partial t^2))?$		
	[a] Elliptic [b] Parabolic		
	[c] Hyperbolic [d] All the above		
Qn.	Section – B $[5 x 4 = 2$	0]	K –
No.	Answer ALL the Questions	CO(s)	Level
11.a)	Describe the equation $(x^2 + 2y^2)p - xyq = xz$.	CO1	K2

	[OR]		
b)	Describe the equation $p + 3q = 5z + tan(y - 3x)$.	CO1	K2
12.a)	Classify the following partial differential equation	CO2	K2
	$xyr - (x^2 - y^2)s - xyt + py - qx = 2(x^2 - y^2)$		
	[OR]		
b)	Describe $y(x + y)(r - s) - xp - yq - z = 0$	CO2	K2
13.a)	Describe the equation	CO3	K2
	$x^{2}\left(\frac{\partial^{2}z}{\partial x^{2}}\right) - 3xy\left(\frac{\partial^{2}z}{\partial x \partial y}\right) + 2y^{2}\left(\frac{\partial^{2}z}{\partial x^{2}}\right) + 5y\left(\frac{\partial z}{\partial y}\right) - 2z = 0$		
	[OR]		
b)	Describe the equation $yt - q = xy$	CO3	K2
14.a)	Solve boundary value problem	CO4	K3
	$\frac{\partial u}{\partial x} = 4 \left(\frac{\partial u}{\partial y} \right)$, if $u(0, y) = 8e^{-3y}$.		
	[OR]		
b)	Apply the method of separation of variables, solve:	CO4	K3
	$(\partial u/\partial x) - u = 2(\partial u/\partial t)$, where $u(x, 0) = 6e^{-3x}$.		
15.a)	Explain D'Alembert's solution of one dimensional wave equation.	CO5	K3
	[OR]		
b)	Solve the one dimensional diffusion equation $\frac{\partial^2 u}{\partial x^2} = \left(\frac{1}{k}\right) \left(\frac{\partial u}{\partial t}\right)$ in the range	CO5	K3
	$0 \le x \le 2\pi, t \ge 0$ subject to the boundary conditions $u(x, 0) = sin3x$ for		
	$0 \le x \le 2\pi$ and $u(0, t) = u(0, 2\pi) = 0$ for $t \ge 0$.		
Qn.	Section – C $[3 \times 10 = 30]$	$\mathbf{CO}(\mathbf{a})$	K –
No.	Answer ANY THREE Questions	CO(s)	Level
16.	Solve, $2xz - px^2 - 2qxy + pq$ and also find the complete and singular	CO1	K3
	integrals.	~ ~ ~	
17.	Solve the differential equation $2 - \frac{2}{3} = \frac{1}{3} $	CO2	K3
	$(y-1)r - (y^2 - 1) + y(y-1)t + p - q = 2ye^{2x}(1-y)^3$ to canonical		
18.	form. Solve: $(x^2D^2 - 2xyDD' - 3y^2D'^2 + xD - 3yD')z = x^2ycos(\log x^2)$	CO3	K3
10. 19.	Solve. $(x D - 2xyDD - 3y D + xD - 3yD) 2 - x ycos(log x)$ Solve	CO3	K3 K4
17.	Solve $\partial u/\partial t = (\partial^2 u/\partial x^2), 0 < x < 3, t > 0$, given that $u(0,t) = u(3,t) = u(3,t)$	004	174
	$0, u(x, 0) = 5 \sin 4\pi x - 3 \sin 8\pi x + 2 \sin 10\pi x, u(x, t) < M, M$		
	being a positive real number.		
	0 Fourier		

20. Determine the D'Alembert's solution of the following Cauchy problem of CO5 K5 an infinite string

$$u_u - c^2 u_{xx} = 0, x \in R, \quad t > 0, u(x, 0) = f(x), x \in R, u_1(x, 0)$$
$$= g(x) x \in R.$$

Reg. No:

G.T.N. ARTS COLLEGE (AUTONOMOUS)

DINDIGUL - 624 005

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATIONS – NOVEMBER 2021

(Course Code: 20PMAC24 Tim	Date: 07.02.2022 Time: 2 pm 5 pm Max. Marks 60		
Qn. No. 1.	Section – A[10Answer ALL the QuestionsWhile solving IP problem any non integer variable in the solutions is pick		CO(s)	K – Level
	[a] Obtain the cut constraint			
	[b] Enter the solutions	(CO1	K1
	[c] Leave the solution			
	[d] None of the above			
2.	If all the variables in the optimum solutions thus obtained have			
2.	[a] Variable values			
	[b] Non integer values	(CO1	W0
	[c] Only integer values	· · · · ·	201	K2
	[d] None of these			
3.	The important advantage of goal programming is that it can be solved by	modified		
5.	version of	mounica		
	[a] simplex method			
	[b] dual simplex method	(CO2	K1
	[c] GP model			
	[d] single goal model			
4.	Goal programming can be applied to almost managerial decision a	reas.		
	[a] unlimited			
	[b] limited			
	[c] equal			
	[d] none of these	(CO2	K2
		,	.02	112

5.	If the earliest starting time for an activity is 8 weeks, the latest finish time is 37 weeks and the duration time of the activity is 11 weeks, then the total is equal to		
	·	CO 2	17.1
	[a] 18 weeks	CO3	K1
	[b] 14 weeks		
	[c] 56 weeks		
-	[d] 40 weeks		
6.	Which one of the following is assumed for timing the activities is PERT network?		
	[a] α distribution		
	[b] β distribution	CO3	K2
	[c] Binomial distribution		
	[d] Erlangian distribution		
7.	The individual's satisfaction level over a risky decision and its outcomes is		
	[a] Events		
	[b] Payoff table	CO4	K1
	[c] Utilities		
	[d] Acts		
8.	The environment where the availability of information for a decision environment is		
	partial, then it is known as		
	[a] Decision making under Risk	CO4	K2
	[b] Decision making under Uncertainty		
	[c] Decision making under certainty		
	[d] Decision making under Conflict		
9.	Which one of the following satisfies the necessary and sufficient condition for an		
	absolute maximum of $f(x)$ at \overline{x} in Kuhn Tucker method is following:		
	I. $\frac{\partial L(\bar{x}, \bar{\lambda}, \bar{s})}{\partial x_j} = 0, \ j = 1, 2, \dots n$		
	II. $\lambda_i (g_i(\bar{x}) - (b_i) = 0, i = 1, 2,, n$		
	III. $(g_i(\bar{x}) \leq (b_i), i = 1, 2,, n$		
	IV. $\lambda_i \geq 0, i = 1, 2,, n$		
	[a] 1 & 2	CO5	K1
	[b] 2 & 3		
	[c] 1 & 3		
	[d] all of above		

10. In General Quadratic Programming Problem if $X^T Q X$ is negative definite then it is

<u>in X over all of \mathbb{R}^n </u>.

- [a] concave
- [b] con vex
- [c] Strictly concave
- [d] strictly convex

Qn.	Section $-B$ [5 x 4 = 20]		K –			
No.	Answer ALL the Questions	CO(s)	Level			
11.a)	Define Goal Programming and Distinguish between LP and Goal Programming	CO1	K2			
	[OR]					
11.b)	Explain the algorithm involved in the iterative solution to all L.P.P	CO1	K2			
12.a)	A company is considering all allocation of Rs. 150,000 advertising budget to two					
	magazines (A and B). Rated exposures per hundred rupees of advertising					
	expenditure are 1,000 and 750, respectively, for the two magazines; and it has been					
	forecast that on the average Rs.10 in sales results from each advertisement exposure.	602	WO.			
	Management has decided that no more than 75% of the advertising budget can be	CO2	K2			
	expended in magazine [A] The company has indicated that it would like to achieve					
	exactly 1.5 million exposures from its advertising program. Management's objective					
	is to allocate its money to advertising in such a way that sales (Rs.) are maximized.					
[OR]						
12.b)	Give the difference between linear programming and goal programming.	CO2	K2			

13.a) Mention the main features of critical path.

[**OR**]

13.b) Consider the following network where nodes have been numbered according to the Fulkerson's Rule. Numbers along various activities represent the normal time (D_{ij}) required to finish that activity

CO3 K3

CO3

K3

K2

CO5

14.a) Under an employment promotion programming, it is proposed to allow sale of newspapers on the buses during off-peak hours. The vendor can purchase the newspaper at a special concessional rate of 25 paise per copy against the selling price of 40 paise. Unsold copies are, however, a dead loss. A vendor has estimated the

following probability distribution for the number of copies demanded.

Number of copies demanded	15	16	17	18	19	20
Probability	0.04	0.19	0.33	0.26	0.11	0.07

How many copies should he order so that his expected profit will be maximum?

[OR]

- 14.b) A manager must choose between two investments A and B which are calculated to yield net profits of Rs. 1,200 and Rs. 1,600 respectively, with probabilities is subjectively estimated at 0.75 and 0.60. Assume the manager's utility function reveals that utilities for Rs. 1,200 and Rs. 1,600 amounts are 40 and 45 units, respectively. What is the best choice on the basis of expected utility value (EUV)?
- 15.a) Prove that necessary and sufficient conditions for the optimum solution of the following non-linear programming problem: Minimize $z = f(x_1, x_2) = 3e^{2x_1+1} + 2e^{x_2+5}$, Subject to the constraints: $x_1 + x_2 = 7$, and $x_1, x_2 \ge 0$ CO5 K2

[OR]

15.b)	Find the dimensions of a rectangular parallelopiped with largest volume whose sides		
	are parallel to the coordinate plane, to be inscribed in the ellipsoid	005	V)
	$G(x, y, z) \equiv \left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) + \left(\frac{z^2}{c^2}\right) - 1 = 0$	CO5	K2
Qn.	Section $-C$ [3 x 10 = 30]		K –
No.	Answer ANY THREE Questions	CO(s)	Level
16.	Use Branch-and-Bound method technique to solve the following integer		
	programming problem Max z = $7x_1 + 9x_2$, subject to $-x_1 + 3x_2 \le 6$,	CO1	K3
	$7x_1 + x_2 \le 35, x_1 \ge 0, x_2 \le 7$ and are integers.		
17.	Use modified simplex method to solve the complete goal programming	CO2	K3
	formulation is again reproduced as t		

formulation is again reproduced as : Minimize $z = p_1d_1^- + 2p_2d_2^- + p_2d_3^- + p_3d_1^-$, Subject to : $x_1 + x_2 + d_1^- - d_1^+ = 400$; $x_1 + d_2^- = 240$; $x_2 + d_3^- = 300$, and $x_1, x_2, d_1^-, d_1^+, d_2^-, d_3^- \ge 0$

JOB	Normal Time	Cost (Rs.)	Cost Time	Crash Cost
	(days)		(days)	(days)
1-2	6	1400	4	1900
1-3	8	2000	5	2800
2-3	4	1100	2	1500
2-4	3	800	2	1400
3-4	Dummy			
3-5	6	900	3	1600
4-6	10	2500	6	3500
5-6	3	500	2	800

18. Table below shows, jobs, their normal time and cost, and crash time and cost for a project.

CO3 K4

Indirect cost for the project is Rs. 300 per day

(i) Draw the network of the project

(ii) What is the normal duration cost of the project?

(iii)If all activities are crashed, what will be the project duration and corresponding cost?

- (iv) Find the optimum duration and minimum project cost.
- 19. A farmer is attempting to decide which of three crops he should plant on his onehundred acre farm. The profit from each crop is strongly dependent on the rainfall during the growing season. He organized the amount of rainfall as substantial, moderate or light. He estimate his profit for each crop as shown the table:

Rainfall	Estimated profit (Rs)				
	Crop A	Crop B	Crop C		
Substantial	7000	2500	4000		
Moderate	3500	3500	4000		
Light	1000	4000	3000		

Depending on the weather in previous seasons and the current projection for the coming season, he estimates the probability of substantial rainfall as 0.2 that of moderate rainfall as 0.3 and that of light rainfall 0.5. Furthermore, services of forecasters could be employed to provide a detailed survey of current rainfall prospects as given in the table below:

CO4 K5

Rainfall prediction						
Actual	Substantial	Moderate	Light			
rainfall						
Substantial	0.70	0.25	0.05			
Moderate	0.30	0.60	0.10			
Light	0.10	0.20	0.70			

a) From the available data, determine the optimal decision as to which crop to plant.

b) Determine whether it would be economical for hire the services of a forecaster.

20. Apply Beale's method for solving the quadratic programming problem:

Max $z_x = 10 x_1 + 25x_2 - 10x_1^2 - 4 x_1 x_2 - x_2^2$, subject to CO5 K3 $x_1 + 2x_2 + x_3 = 10, x_1 + x_2 + x_4 = 9$, and $x_1, x_2, x_3, x_4 \ge 0$.

Reg. No:

G.T.N. ARTS COLLEGE (AUTONOMOUS)

DINDIGUL - 624005

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

C	Programme: M.Sc., MATHEMATICS Course Code: 20PMAC25 Course Title: Calculus of Variations	Date: 08.02.2 Time: 2 pm Max. Marks		
Qn. No.	Section – A Answer ALL the Questions	[10 x 1 = 10]	CO(s)	K – Level
1.	The extremal of the functional $\int_a^b (12xy + y'^2) dx$ is		CO1	K1
	a) $y(x) = x^3$ b) $y(x) = x^3$ c) $y(x) = x^3 + c_1 x + c_2$ d) $y(x) = x^3 + c_1 x + c_2$	$x^3 - c_1 x - c_2 = 0$		
2.	The extremal of the following functional $\int_a^b y^2 dx$ is		CO1	K2
	a) $y(x) = 0$ b) $y(x) = 1$ c) $y(x) = 1$	2 d) $y(x) = 3$		
3.	Which is the extremal of the following functional $I[z(x,y)] = \int_{D} [(p^{2} + q^{2}) + 2z f(x,y)] dxdy?$		CO2	K1
	a) Poisson equation b) Euler eq	uation		
4.	c) Isopermetric d) Cauchy	equation	CO2	K2
	The value of the extremal for the functional $\int_0^{\frac{\pi}{2}} (2xy + x')^2$	$^{2}+y^{\prime 2}) dx$		
	with the boundary condition			
	$x(0) = 0, x(\pi/2) = 1$ and $y(0) = 0, y(\pi/2) = 1$ is			

a) x = -sint, y = sint b) x = cost, y = -cost

c) x = sint, y = -sint d) x = siny, y = cost

5.	The	extremals	of	the	functional	I(y) =	$\int_0^{\frac{\pi}{2}} (y''^2 - y^2 + x^2) dx$ is	CO3	K1
		·		<u> </u>	1 0				
		a) one par	amet	er fami	ly of curves				

- b) two parameter family of curves
- c) three parameter family of curves
 - d) four parameter family of curves.

6. The extremal for
$$I(y) = \int_0^{\log 3} (e^{-x} y'^2 + 2e^x (y' + y) dx$$
, where CO3 K2
 $y(\log 3) = 1$ and $y(0)$ is free is _____.

- a) 4-e^x b) 10-e^x
- c) $2 e^x$ d) $8 e^x$

7. Test for an extremum of the functional $I[y(x)] = \int_0^1 e^2 (y^2 + \frac{y'^2}{2}) dx$ is CO4 K1

- a) Strong maxima
- b) Strong minima
- c) Weak maxima but not a strong maxima
- d) Weak minima but not a strong minima

8. Examine the function
$$f(x, y) = 3x^2 + 6xy + 7y^2 - 2x + 4y$$
 then _____. CO4 K2

- a) (13/12, -3/4) is a critical point
- b) Local minimum at (-13/12,-3/4)
- c) Local maximum at (-13/12,-3/4)
- d) (12,14) strong maxima

9. The boundary value problem y'' - y + x = 0, $(0 \le x \ge 1)$ is _____. CO5 K1

- a) $y(x) = c_0 + c_1 x + c_2 x^2$ b) $y(x) = c_0 + c_1 x^2 + c_2 x$ c) $y(x) = c_0 + c_1 x + c_2 x^3$ d) $y(x) = c_0 + c_1 x$
- 10. The boundary value problem $y^n = 1$, y(0) = 0, y(1) = 0 by Rayleigh-Ritz CO5 K2 method is _____.

a)
$$y(x) = c(x - x^2)$$

b) $y(x) = c(x^2 - x)$
c) $y(x) = c(x + x^2)$
d) $y(x) = 0$

Qn.

No.

Section – B [5 x 4 = 20] CO(s) K – Level

Answer ALL the Questions

11.a) Explain the extremal of the functional $I(y) = \int_0^e (xy'^2 + yy') dx$ subject to CO1 K2 the condition y(1) = 0, y(e) = 1.

[OR]

- b) Explain the extremal $I[y(x)] = \int_{a}^{b} (y''^{2} 2y'^{2} + y^{2} 2ysinx) dx$. CO1 K2
- 12.a) Show that the extremal of the isopermetric problem $I[y(x)] = \int_{1}^{4} y'^{2} dx$ CO2 K2 with y(1) = 3, y(4) = 24 to condition $\int_{1}^{4} y dx = 36$ is a parabola.

[OR]

- b) Explain the extremal of the functional $I = \frac{1}{2} \int_0^1 {y''}^2 dx$ such that CO2 K2 $y(0) = 0, y(1) = \frac{1}{2}, y'(0) = 0, y'(1) = 1.$
- 13.a) Solve the shortest distance from the point A(-1,3) and the straight line CO3 K3

y = 1 - 3x.

[OR]

- b) Solve the shortest distance between the point (0,1) and $y = x^2$. CO3 K3
- 14.a) Solve the extremum of the functional $I(y) = \int_0^1 e^x \left(y^2 + \frac{{y'}^2}{2}\right) dx$. CO4 K3

[OR]

b) Explain the proper and central field of extremals for the function CO4 K3

$$I = \int_{0}^{\frac{\pi}{4}} (y'^{2} - y^{2} + 2x^{2} + 4) \, dx \, .$$

15.a) Explain the least eigen value of $y'' + \lambda y = 0$, y'(0) = 0, y(1) = 0. CO5 K2

[OR]

Identity the Poisson equation $u_{xx} + u_{yy} = -1$ on a square defined by b) CO5 K2 $|x| \le 1$, $|y| \le 1$ and u = 0 when $x = \pm 1$, $y = \pm 1$.

Answer ANY THREE Questions

- 16. Construct the path on which a particle in the absence of friction will slide CO1 K3 from one point to another in the shortest time under the action of gravity.
- Solve the extremal of the functional $I[y(x)] = \int_0^{\frac{\pi}{2}} [y''^2 y^2 + x^2] dx$ 17. CO₂ K3

with the condition y(0) = 1, y'(0) = 0 and $y(\frac{\pi}{2}) = 0$, $y'(\frac{\pi}{2}) = -1$.

- Summarize the minimum distance between circle $x^2 + y^2 = 1$ and straight 18. CO3 K5 line x + y = 4.
- 19. Test for an extremum the functional CO4 K4

$$I[y(x)] = \int_0^1 (x + 2y + \frac{y'^2}{2}) dx$$
, with the condition $y(0) = y(1) = 0$

20. Show that the extremal of the variational problem CO5 K3 $\int_0^2 (y'^3 + \sin^2 x) dx$ with the condition y(0) = 0, y(2) = 6 is included

in a central field of extremals of the given functional.

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2020

Programme: M.Sc. Mathematics	Date: 03.02.2022
Course Code: 20PMAC31	Time: 10 am. to 1 pm.
Course Title : Linear Algebra - I	Max. Marks: 60

	Sectio		[20 x 1 = 20]	CO(s)	K – Level
1.	Answer ALL t Which of the following is a subspace of	-		CO1	K1
1.	[a] all vectors of the form (0, <i>a</i> , 0) when			COI	KI
	[b] all vectors of the form $(a, 1, 1)$ when				
	[c] all vectors of the form (a, b, c) when				
	[d] all vectors of the form $(2, a, 1)$ when				
	[u] an vectors of the form $(2, u, 1)$ when				
2.	Which one of the following is not a vec	tor space over <i>C</i> ?		CO1	K2
	[a] R	[b] <i>R</i> – { 0}			
	[c] Z	[d] N			
3.	What is the dimension of $C(R)$?			CO2	K1
	[a] 1	[b] 2			
	[c] 3	[d] 4			
4.	The number of elements in any two bas	es of a finite dimension	al vector space	CO2	K2
	[a] same	[b] different			
	[c] infinite	[d] Finite			
5.	Let V and W be vector spaces over transformation from V into W and V is a following is true?			CO3	K1
	[a] Rank (T) + nullity (T) $\leq \dim V$	[b] rank (T) = dim V +	- 1		
	$[c] \dim V = rank (T) + nullity (T)$	$[d] \dim V = 0 \text{ only}$			
6.	A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ suc T(0,1) = (1,4) then which of the follow		nd	CO3	K2
	[a] $T(x, y) = (y, -5x + 4y)$	[b] $T(x,y) = (2x, \frac{3}{2}y)$)		
	[c] $T(x, y) = (x + 1, 5x + 4y)$	[d] T(x, y) = (x , y)			

7.	If A = $\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$. Then rank $(A - 2I)$ is	CO4	K1
8.	[a] 0[b] -1[c] 1[d] none.If V is a finite dimensional vector space and W is a subspace of V, then theinvariance of W under T has a interpolation.[a] matrix[b] zero polynomial[c] polynomial[d] Hermitian matrix	CO4	K2
9.	Let u and v be eigen vectors of T corresponding to two distinct eigen values of T . Which of the following is true? [a] $u + v$ can be an eigen value of T [b] $u + v$ cannot be an eigen value of T [c] $u - v$ can be an eigen value of T [d] $\{u, v\}$ is not a linearly independent set.	CO5	K1
10.	If T is diagonalizable and has a cyclic vector then T has $[a] n - 1$ distinct eigen values $[b] n$ distinct eigen values $[c] n + 1$ distinct eigen values $[d] n^2$ eigen values	CO5	K2
		CO(s)	
	Section – B $[5 \times 6 = 30]$		K – Level
11.a)	Answer ALL the Questions Let W and U be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f: V \to \frac{V}{W}$	CO1	K – Level K2
11.a)	Answer ALL the Questions Let W and U be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f: V \to \frac{V}{W}$ be the quotient map. Show that $f(U)$ is a proper subspace of $\frac{V}{W}$.		
11.a) 11.b)	Answer ALL the Questions Let W and U be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f: V \to \frac{V}{W}$		
	Answer ALL the Questions Let W and U be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f: V \to \frac{V}{W}$ be the quotient map. Show that $f(U)$ is a proper subspace of $\frac{V}{W}$. [OR] If L, M, N are three subspaces of a vector space V, such that $M \subseteq L$ then show	CO1	К2
11.b)	Answer ALL the Questions Let W and U be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f:V \to \frac{v}{w}$ be the quotient map. Show that $f(U)$ is a proper subspace of $\frac{v}{w}$. [OR] If L, M, N are three subspaces of a vector space V, such that $M \subseteq L$ then show that $L \cap (M + N) = (L \cap M) + (L \cap N) = M + (L \cap N)$. Let V be a finite dimensional vector space and suppose S and T are two finite subsets of V such that S spans V and T is linearly independent. Prove that $O(T) \leq O(S)$. [OR] Let A be $n \times n$ symmetric matrix and suppose that R^n has the standard inner	CO1 CO1	K2 K2
11.b) 12.a)	Answer ALL the Questions Let W and U be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f: V \to \frac{V}{W}$ be the quotient map. Show that $f(U)$ is a proper subspace of $\frac{V}{W}$. [OR] If L, M, N are three subspaces of a vector space V, such that $M \subseteq L$ then show that $L \cap (M + N) = (L \cap M) + (L \cap N) = M + (L \cap N)$. Let V be a finite dimensional vector space and suppose S and T are two finite subsets of V such that S spans V and T is linearly independent. Prove that $O(T) \leq O(S)$. [OR]	CO1 CO1 CO2	K2 K2 K3

13.b) Let *T* be linear operator on R^3 , the matrix of which in the standard ordered CO3 K3

	basis is A= $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$. Find a basis for the range of T and a basis for null		
14-)	space of T .	CO4	W2
14.a)	Let T be a linear operator on an n-dimensional space V . Prove that the	CO4	K3
	characteristic and minimal polynomials for T have the same roots		
14.b)	[OR] Prove that the minimal polynomial of a linear operator T divides its	CO4	К3
14.0)	characteristics polynomial.	04	KJ
15.a)	If T is an idempotent linear operator, then show that 0 or 1 are only eigen	CO5	K2
	values of <i>T</i> and <i>T</i> is diagonalizable.		
	[OR]		
15.b)	Let T be a linear operator on a finite dimensional vector space V. Let $f(x)$ be	CO5	K2
	the characteristic polynomial for T. Then $f(T) = 0$.		
	Section – C $[5 \times 10 = 50]$	CO(s)	K – Level
	Answer ALL the Questions		
16.	If S_1 and S_2 are subsets of V, then prove that	CO1	K3
	$i)S_1 \subseteq S_2 \implies L(S_1) \subseteq L(S_2)$		
	ii) $L(S_1 \cup S_2) = L(S_1) + L(S_2)$		
	$iii)L(L(S_1)) = L(S_1).$		
17.	State and prove Gram- Schmidt Orthogonalisation process.	CO2	K4
18.	Let $T: V \to W$ and $S: W \to U$ be two linear transformations. Prove that	CO3	K4
	(i) If S and T are one-one onto then ST is one-one onto and $(ST)^{-1}$.		
	(ii) If <i>ST</i> is one-one then <i>T</i> is one-one.		
	(iii) If <i>ST</i> is onto then <i>S</i> is o		
19.	Obtain the eigen values, eigen vectors and eigen spaces of	CO4	K4
	[0 1 0]		
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$		
	[OR]		
20.	Let T be a linear operator on a finite dimensional vector space $V(F)$. Suppose	CO5	K3
	that the minimal polynomial for T decompose over F into a product of linear		
	polynomials. Prove that there exists a diagonalizable operator D on V and a		
	nilpotent operator N on V such that		
	i) $T = D + N$		

ii) DN = ND. Further D and N are uniquely determined such that T = D + N and DN = ND.

Reg. No:									
----------	--	--	--	--	--	--	--	--	--

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

	Programme: M.Sc Course Code: 20PMAC32 Course Title : Measure Theory		Date: 04.02.20 Time: 10 am Max. Marks:	Го 1 рт		
Qn. No.	Answer	Section – A ALL the Questions	[10 x 1 = 10]	CO(s)	K – Level	
1.	What is the necessary condition s	atisfied for $m^*(A) \le m^*(B)$?		CO1	K1	
	$[a] A \supseteq B$	[b] $A ⊆ B$				
	$[c] A \subset B$	$[\mathbf{d}] A \supset B$				
2.	Which of the following property	is not satisfied by the outer me	asure?	CO1	K2	
	[a] translation invariant	[b] countable additivity				
	[c] monotonicity	[d] countable subadditivity				
3.	Which of the following ismeasura	able?		CO2	K1	
	[a] monotone function	[b] constant function				
	[c] continuous function	[d] all the above				
4.	The alternative form of <i>Ess</i> sup <i>J</i>	f is		CO2	K2	
	$[a] - ess \inf(-f)$	[b] ess inf $(-f)$				
	[c] - esssup(-f)	[d] esssup(-f)				
5.	Choose the correct statement if f	and g be non-negative measura	ble function.	CO3	K1	
	$[a] \int f dx + \int g dx \neq \int (f + f) dx$	g) dx				
	$[b] \int f dx + \int g dx = \int (f \mp$	g)dx				
	$[c] \int f dx + \int g dx \leq \int (f + f) dx = \int (f + f) dx$	g) dx				
	$[d] \int f dx + \int g dx \ge \int (f - f) dx = \int (f - f) dx$	g)dx				
6.	Choose the correct one for any m	easurable set E and any non-ne	egative	CO3	K2	
	measurable function f is said to be	be the integral of f over E .				

$$[a] \int_{E} f \, dx = \int_{E} f \, \chi_{E} \, dx \qquad [b] \int_{E} f \, dx = \int_{E} \emptyset \, dx$$
$$[c] \int_{E} f \, dx = \sup \int_{E} \emptyset \, dx \qquad [d] \int_{E} f \, dx = -\int_{E} f \, \chi_{E} \, dx$$

7.	Let $a = \xi_0 < \xi_1 < \dots < \xi_n$	$= b$ be a partition D of [a, b] then s_D is	CO4	K1
	[a] $\sum_{i=1}^{n} M_i (\xi_i - \xi_{i-1})$	[b] $\sum_{i=1}^{n} m_i (\xi_i - \xi_{i-1})$		
	$[c] \sum_{i=1}^{n} M_i \left(\xi_{i-1} - \xi_i \right)$	[d] $\sum_{i=1}^{n} m_i (\xi_{i-1} - \xi_i)$		
8.		$x \in Q$	CO4	K2
	If $f(x) = \begin{cases} x \\ 2 x \end{cases}$	$x \notin Q$		
	then the value of $D^-f(0)$ is _	·		
	[a] 2	[b] 1		
	[c] -1	[d] -2		
9.	If a ring is closed under the	formation of countable unions then it is called	CO5	K1
	$\underline{\qquad}$ [a] σ -ring	[b] σ –algebra		
	[c] σ -field	[d] σ –semi ring		
10.	A measure μ on \mathcal{R} is complete		CO5	K2
	$[a] E \in \mathfrak{R}$	[b] $F \subseteq E$		
	[c] $\mu(E) = 0$	[d] all the above		
Qn.		Section – B [5 x 4 = 20]		K –
			CO(s)	
No.	Ansv	ver ALL the Questions		Level
No. 11.a)		wer ALL the Questions ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and	CO1	Level K3
		ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and	CO1	
	Show that for any set A and a	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and	CO1	
11.a)	Show that for any set A and as such that $m^*(0) \le m^*(A) +$	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ .		
11.a)	Show that for any set A and as such that $m^*(0) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR]		К3
11.a)	Show that for any set A and as such that $m^*(0) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> .		К3
11.a) b)	Show that for any set A and a such that $m^*(0) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A}	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> .	CO1	K3 K3
11.a) b)	Show that for any set A and a such that $m^*(0) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> . ns are measurable.	CO1	K3 K3
11.a) b) 12.a)	Show that for any set A and a such that $m^*(0) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> . Ins are measurable. [OR]	CO1 CO2	K3 K3 K2
11.a) b) 12.a) b)	Show that for any set A and a such that $m^*(O) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function Prove that the set of points or converges, is measurable.	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> . Ins are measurable. [OR]	CO1 CO2 CO2	K3 K2 K2
11.a) b) 12.a)	Show that for any set A and a such that $m^*(O) \le m^*(A) + A$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> . Ins are measurable. [OR]	CO1 CO2	K3 K3 K2
11.a) b) 12.a) b)	Show that for any set A and a such that $m^*(O) \le m^*(A) +$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function Prove that the set of points or converges, is measurable.	ny $\epsilon > 0$, there is an open set <i>O</i> containing <i>A</i> and ϵ . [OR] f a space <i>X</i> , there exists a smallest σ –algebra <i>S</i> S is a σ –algebra generated by <i>A</i> . Ins are measurable. [OR]	CO1 CO2 CO2	K3 K2 K2
11.a) b) 12.a) b)	Show that for any set A and a such that $m^*(O) \le m^*(A) + A$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function Prove that the set of points or converges, is measurable. Show that $\int_1^\infty \frac{dx}{x} = \infty$	ny $\epsilon > 0$, there is an open set O containing A and ϵ . [OR] f a space X , there exists a smallest σ –algebra S S is a σ –algebra generated by A . Ins are measurable. [OR] h which a sequence of measurable functions $\{f_n\}$	CO1 CO2 CO2	K3 K2 K2
11.a) b) 12.a) b) 13.a)	Show that for any set A and a such that $m^*(O) \le m^*(A) + A$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function Prove that the set of points or converges, is measurable. Show that $\int_1^\infty \frac{dx}{x} = \infty$ Show that if f is integrable, the	ny $\epsilon > 0$, there is an open set O containing A and ϵ . [OR] f a space X , there exists a smallest σ –algebra S S is a σ –algebra generated by A . Ins are measurable. [OR] h which a sequence of measurable functions $\{f_n\}$	CO1 CO2 CO3	K3 K3 K2 K3
11.a) b) 12.a) b) 13.a)	Show that for any set A and a such that $m^*(O) \le m^*(A) + A$ Let \mathcal{A} be a class of subsets of containing \mathcal{A} then prove that \mathcal{A} Prove that continuous function Prove that the set of points or converges, is measurable. Show that $\int_1^\infty \frac{dx}{x} = \infty$ Show that if f is integrable, the	ny $\epsilon > 0$, there is an open set O containing A and ϵ . [OR] f a space X , there exists a smallest σ –algebra S S is a σ –algebra generated by A . Ins are measurable. [OR] h which a sequence of measurable functions $\{f_n\}$ [OR] hen f is finite-valued almost everywhere.	CO1 CO2 CO3 CO3	K3 K2 K2 K3

[OR]

b) If
$$f(x) = x \sin\left(\frac{1}{x}\right)$$
 for $x \neq 0$, $f(0) = 0$, find the four derivates at $x = 0$. CO4 K3

15.a) Let μ^* be the outer measure on $\mathcal{H}(\mathcal{R})$ defined by μ on \mathcal{R} , then prove that S^* CO5 K2 contains $S(\mathcal{R})$ is the σ – ring generated by \mathcal{R} .

[OR]

- b) Prove that the limit of a point wise convergent sequence of measurable CO5 K2 functions is measurable.
- Section C Qn. $[3 \times 10 = 30]$ K – CO(s)
- **Answer ANY THREE Questions** Level Let $\{E_i\}$ be a sequence of measurable sets. 16. Prove that **CO1** K4 (i) if $E_1 \subseteq E_2 \subseteq \cdots$, then $m(\lim E_i) = \lim m(E_i)$.

(ii) if $E_1 \supseteq E_2 \supseteq \cdots$, and $m(E_i) < \infty$ for each *i*, then $m(\lim E_i) =$ $\lim m(E_i)$.

- Let $\{f_n\}$ be a sequence of measurable functions defined on the same K2 17. CO₂ measurable set. Then prove that
 - (i) $\sup_{1 \le i \le n} f_i$ is measurable for each n,
 - $\inf_{1 \le i \le n} f_i$ is measurable for each n, (ii)
 - Sup f_n is measurable, (iii)
 - inf f_n is measurable, (iv)
 - lim Sup f_n is measurable, (v)
 - lim inf f_n is measurable. (vi)
- 18. State and prove that Lebesgue's dominated convergence theorem for series. CO3 K3
- 19. Let f be bounded and measurable on a finite interval [a, b] and let $\in > 0$ then CO4 K4 prove that there exist
 - a step function h such that $\int_a^b |f h| dx \ll \epsilon$, (i)
 - a continuous function g such that g vanishes outside a finite (ii) interval and $\int_a^b |f - g| \, dx < \epsilon$.
- 20. Let $\{A_i\}$ be any sequence in a ring \mathcal{R} , then prove that there is a sequence $\{B_i\}$ K2 CO5 of disjoint sets of \mathcal{R} such that $B_i \subseteq A_i$ for each *i* and $\bigcup_{i=1}^{N} A_i = \bigcup_{i=1}^{N} B_i$ for each N, so that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$.

No.

Reg. No:

1 a	
W GOD WE THEIT	

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

Programme: M.Sc., MATHEMATICS	Date : 05.02.2022
Course Code: 20PMAC33	Time : 10 am To 1 pm
Course Title: Topology	Max. Marks : 60

Qn. No.	Answe	Section – A [10 x 1 = 10] r ALL the Questions	CO(s)	K – Level
1.		of all subsets of X is called	CO1	K1
	[a] Indiscrete topology	[b] Discrete topology		
	[c] Trivial topology	[d] Ring topology		
2.	Which of the following is true, real number?	if the topological space consists of the set of	CO1	K2
	[a] Co-finite topology	[b] Co-countable topology		
	[c] Co-complement topology	[d] Usual topology		
3.	What is the $int(A)$ if = { a, b, c ,	<i>d</i> , <i>e</i> }	CO2	K 1
	$\mathfrak{I} = \{X, \emptyset, \{b\}, \{a, d\}, \{a, b, d\}, \{a, c, d, e\}\} \text{ and } A = \{a, b, c\}?$			
	[a] { <i>a</i> }	[b] { <i>b</i> }		
	[c] { <i>c</i> }	$[d] \{d\}$		
4.	What is A^o if $A \subseteq X$ in a topolo	ogical space (X, J)?	CO2	K2
	[a] A^o is closed	[b] A^o is Ø		
	[c] A^o is X	[d] A ^o is open		
5.	Let (R , U) be usual topologic	cal space and $A, B \subseteq R$ where $A = (2,3)$ and	CO3	K1
	B = (4,5)then			
	[a] A and B are separated	[b] A and B may be separated		
	[c] A and B are separated	[d] can't say		
6.	Let (X, \mathfrak{I}_1) and (Y, \mathfrak{I}_2) be two	topological spaces then a function $f: X \to Y$	CO3	K2
	is said to be bicontinuous if f is	s		
	[a] Open	[b] Continuous		
	[c] Both a & b	[d] Neither a nor b		

7.	Which of the following condition for cover of a subset ?[a] $A \in \{G_{\alpha} : \alpha \in \Lambda\}$ [b] $A \in \bigcup\{G_{\alpha} : \alpha \in \Lambda\}$ [c] $A \notin \bigcup\{G_{\alpha} : \alpha \in \Lambda\}$ [d] Both a and b	CO4	K1
8.	 Which of the following is true? [a] A subset of a compact Hausdorff space is not compact iff it is closed [b] A subset of a compact Hausdorff space is compact iff it is open [c] A subset of a compact Hausdorff space is compact iff it is closed [d] A subset of a compact Hausdorff space is compact iff it is closed and open 	CO4	K2
9.	Assertion (A): A topological space is T_1 space.Reason (R): Every singleton subset $\{x\}$ of X is a \Im -closed set[a] Both A & R are true[b] A is true, R is false[c] A is false, R is true[d] Both A & R are false	CO5	K1
10.	 Which one of the following is true? [a] Every second countable is separable. [b] Every subspace of a T_o space is T_o space [c] Every subspace of T₂ space is T₂ space 	CO5	K2
	[d] All the above		
Qn.	Section – B [5 x 4 = 20]	CO(s)	_K –
Qn. No. 11.a)		CO(s) CO1	K – Level K2
No.	Section – B Answer ALL the Questions[5 x 4 = 20]If (X, \mathfrak{T}) be a topological space in which $\{A_{\alpha}: \alpha \in \Lambda\}$ be an arbitrary collection of \mathfrak{T} –closed subsets of X. Prove that $\cap A_{\alpha}$ is also a \mathfrak{T} –closed	CO(s)	
No.	Section – B Answer ALL the Questions[5 x 4 = 20]If (X, \mathfrak{T}) be a topological space in which $\{A_{\alpha}: \alpha \in \Lambda\}$ be an arbitrary collection of \mathfrak{T} –closed subsets of X. Prove that $\cap A_{\alpha}$ is also a \mathfrak{T} –closed set.	CO(s)	
No. 11.a)	Section – B Answer ALL the Questions[5 x 4 = 20]If (X, \mathfrak{T}) be a topological space in which $\{A_{\alpha}: \alpha \in \Lambda\}$ be an arbitrary collection of \mathfrak{T} –closed subsets of X. Prove that $\cap A_{\alpha}$ is also a \mathfrak{T} –closed set.[OR]Prove that $\mathfrak{T} = \{X, \emptyset, \{a\}, \{a, c\}, \{a, b, d\}\}$ is a topology for	CO(s) CO1	K2
No. 11.a) b)	Section – B Answer ALL the Questions $[5 \ge 4 = 20]$ If (X, \mathfrak{T}) be a topological space in which $\{A_{\alpha} : \alpha \in \Lambda\}$ be an arbitrary collection of \mathfrak{T} –closed subsets of X. Prove that $\cap A_{\alpha}$ is also a \mathfrak{T} –closed set. $[OR]$ Prove that $\mathfrak{T} = \{X, \emptyset, \{a\}, \{a, c\}, \{a, b, d\}\}$ is a topology for $X = \{a, b, c, d\}$ and find all \mathfrak{T} -closed subsets of X.Prove that every discrete topological space is Hausdorff.	CO(s) CO1	K2 K2

	[OR]		
b)	Prove that in a topological space (X, \mathfrak{I}) , the subsets C and D of separated	CO3	K3
	sets A and B respectively are also separated.		
14.a)	Show that co-finite topological space is compact.	CO4	K2
	[OR]		
b)	Let (X, \mathfrak{J}) be compact space and f be a \mathfrak{J} -continuous mapping of Xinto R ,	CO4	K2
	then prove that f is bounded.		
15.a)	Show that every compact topological space is Lindelof but every Lindelof	CO5	K2
	space is not necessarily compact.		
	[OR]		
b)	Show that every subspace of a T_o -space is a T_o -space.	CO5	K2
Qn.	Section $- C$ [3 x 10 = 30]	$\mathbf{CO}(\mathbf{x})$	K –
No.	Answer ANY THREE Questions	CO(s)	Level
16.	Let X be a non-empty set and C be a collection of subsets of X . Then prove	CO1	K2
	that there exists a family \Im consisting of the members of C such \Im is a		
	topology for X and \Im –closed subsets of X are members of C.		
17.	Let <i>X</i> be a non-empty set and for each $x \in X$. Let N_x be a non-empty	CO2	K3
	collection of subsets of X satisfying the following conditions.		
	(a) $N \in N_x \implies x \in N$		
	(b) $N \in N_x, M \in N_x \implies N \cap M \in N_x$		
	Let \mathfrak{F} -consists of the empty set and also the non-empty subsets A of X		
	having the property that $x \in A$ implies that there exists an $N \subset N_x$ such that		
	$x \in N \subset A$ then prove that \mathfrak{I} is a topology.		
18.	Let A and B be two non-empty disjoint subsets of X and let	CO3	K4
	$E = A \cup B$, then prove that		
	(a) A and B are separated \Leftrightarrow each of A and B are closed in E		
	(b) A and B are separated \Leftrightarrow each of A and B are open in E		
	(c) A and B are separated \Leftrightarrow A and B are both open and closed in E.		
19.	Prove that a topological space (X, \mathfrak{I}) is compact iff every basic open cover	CO4	K3
	of X has a finite subcover.		
20.	Let B be any subset of a second countable space X . If C is an open cover of	CO5	K3
	A then prove that C is reducible to a countable subcover.		

[OR]

Reg. No:

-					

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

Programme: M.Sc., MATHEMATICS	Date: 07.02.2022
Course Code: 20PMAE31	Time: 10 am To 1 pm
Course Title: Graph Theory	Max. Marks 60

Qn.	Section – A		[10 x 1 = 10]		K –
No.	Answer ALL the Q	uestions		CO(s)	Level
1.	A connected graph <i>G</i> is Eulerian if			CO1	K 1
	a) Has no vertices of odd degree				
	b) All vertices of odd degree				
	c) Has no vertices of even degree				
	d) All vertices of odd degree				
2.	How many of the following statements are	correct?		CO1	K2
	i) All cyclic graphs are complete graphs.				
	ii) All complete graphs are cyclic graphs.				
	iii)All paths are bipartite.				
	iv)All cyclic graphs are bipartite.				
	v) There are cyclic graphs which are com	plete.			
	a) 1	b) 2			
	c) 3	d) 4			
3.	What is the value of $\lambda(G)$ for a disconnected	d graph <i>G</i> ?		CO2	K 1
	a) 0	b) 1			
	c) 2	d) None of these			
4.	In a 2-connected graph G , any two longe	est cycles have at	least	CO2	K2
	vertices in common.				
	a) 0	b) 1			
	c) 2	d) 3			
5.	If M is a matching in G such that every ver	tex of G, M-satura	ted then M is	CO3	K1
	called matching.				
	a) Perfect	b) Proper			
	c) Maximal	d) Minimal			

6.	Every stable matching is a matching	; in G.	CO3	K2
	a) Maximal	b) Maximum		
	c) Minimal	d) Minimum		
7.	The chromatic number of connected bipart	ite graph is	CO4	K1
	a) 1	b) 2		
	c) 3	$d) \geq 4$		
8.	A graph <i>G</i> is critical if for ever	y proper sub-graph H of G .	CO4	K2
	a) $\boldsymbol{\chi}(\boldsymbol{H}) < \boldsymbol{\chi}(\boldsymbol{G})$	b) $\chi(H) > \chi(G)$		
	c) $\chi(H) = \chi(G)$	d) $\chi(G) = k$		
9.	K_n is planar if and only if		CO5	K1
	a) $n \leq 4$	b) $n \ge 4$		
	c) $n = 4$	d) $n \neq 5$		
10.	The Peterson graph is		CO5	K2
	a) Planar	b) Non-planar		
	c) Disconnected	d) 2-regular		

Qn.	Section – B $[5 x 4 = 20]$		K –
No.	Answer ALL the Questions	CO(s)	Level
11.a)	Prove that the sum of degrees of a graph is twice the number of edges in it.	CO1	K3
	[OR]		
b)	Define path, walk and trail with suitable examples.	CO1	K3
12.a)	Show that every non-trivial loop-less connected graph has at least two	CO2	K3
	vertices that are not cut vertices.		
	[OR]		
b)	Show that if G is simple and 3-regular, then prove that $k(G) = k'(G)$.	CO2	K3
13.a)	Explain Hamiltonian path and Hamiltonian cycle with examples.	CO3	K2
	[OR]		
b)	If G is a non Hamiltonian simple graph with $v \ge 3$, then prove that G is	CO3	K2
	degree-majorised by some $C_{m,v}$.		
14.a)	If G is bipartite, then prove that $\chi' = \Delta$.	CO4	K2
	[OR]		

- b) Let G be a k critical graph with a 2-vertex cut $\{u, v\}$. Then prove that CO4 K2 $G = G_1 \cup G_2$, where G_i is a $\{u, v\}$ -component of type i (i = 1,2).
- 15.a) Prove that K_5 is non-planer. CO5

[OR]

K3

K3

b) If *G* is a plane graph, then prove that CO5

$$\sum_{f\in F} d(f) = 2\varepsilon.$$

Qn.	Section $-C$ [3 x 10 = 30]		K –
No.	Answer ANY THREE Questions	CO(s)	Level
16.	Write down union and disjoint of two graphs with suitable example.	CO1	K3
17.	Prove that an edge e of G is a cut edge of G if and only if e is contained in	CO2	K4
	no cycle of <i>G</i> .		
18.	Show that in a bipartite graph, the number of edges in a maximum matching	CO3	K3
	is equal to the number of vertices in a minimum covering.		
19.	Let G be a k -critical graph with a 2-vertex cut $\{u, v\}$. Then prove that	CO4	K3
	$d(u) + d(v) \ge 3k - 5.$		
20.	i) Show that the Petersen graph is non-planar.	CO5	K4
	ii) If <i>G</i> is a simple planar graph, then $\delta \leq 5$.		

Reg.	No:
- 0	

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

Programme: M.Sc., MATHEMATICS	Date: 07.02.2022
Course Code: 20PMAE32	Time: 10 am To 1 pm
Course Title: Number Theory	Max. Marks 60

Qn.	Sect	ion – A	[10 x 1 = 10]		K –
No.	Answer AI		CO(s)	Level	
1.	Which one of the following is true i	f G.C.D(a,b) = d?		CO1	K1
	a) d can be written in the linear d	combination of a and b s	uch that $ax +$		
	by = d				
	b) $a + b = d$				
	c) d can be written in the linear d	combination of a and b s	uch that $ax -$		
	by = d				
	d) All of the above				
2.	If n is a positive integer such that	sum of all positive intege	er a satisfying	CO1	K2
	$(a,n) = 1, 1 \le a \le n$ is equal to	5240n, then the number	of summands		
	·				
	a) 120	b) 240			
	c) 480	d) 124			
3.	Which relation is satisfied for cong	ruence on Z?		CO2	K 1
	a) Partial order relation	b) Equivalence relation			
	c) Anti symmetric relation	d) Anti reflexive relatio	n		
4.	Which of the following is true?			CO2	K2
	a) if $a \equiv b \pmod{m}$, then $a^n \equiv b$	$n \pmod{m}$			
	b) if $na \equiv nb \pmod{m}$ and (m, n)	$a = d$ then $a \equiv b \pmod{m}$	d)		
	c) if $na \equiv nb \pmod{m}$ and (m, n)	$a = 1$ then $a \equiv b \pmod{m}$)		
	d) all of these				
5.	What is the quadratic residues mod	ulo 5?		CO3	K1
	a) 1 and 4	b) 1 and 5			
	c) 2 and 3	d) 1 and 3			

6.	What is the value of $\left(\frac{a}{p}\right)$ if $a = -1$ and $p = 11$?			CO3	K2
	a) 1	b) -1			
	c) 32	d) -32			
7.	Find the value of $[-3.4]$?			CO4	K 1
	a) 3	b) 4			
	c) -3	d) -4			
8.	Find the value of $\sum_{n=1}^{\infty} \mu(n!)$?			CO4	K2
	a) 1	b) 0			
	c) -1	d) ∞			
9.	The linear Diophantine equation $7x$	-8y = 5 has		CO5	K1
	a) Exactly one integer solution.				
	b) Exactly two integer solution.				
	c) Infinitely many integer solution	is and the difference betw	een any two		
	values of x in the solutions is divisit	ble by 8			
	d) Infinitely many integer solution	as and the difference betw	een any two		
	values of x in the solutions is divisit	ole by 7			
10.	The Diophantine equation $6x + 8y$ -	+ $12z = 10$ is		CO5	K2
	a) Solvable	b) Un solvable			
	c) a or b	d) Both a & b			
Qn.	Sectio	on – B	[5 x 4 = 20]		K –
No.	Answer AL	L the Questions		CO(s)	Level
11.a)	Prove that $if(a, m) = (b, m) = 1$, t	hen $(ab, m) = 1$.		CO1	K2
		[OR]			
b)	Prove that every integer n greater t	than 1 can be expressed as	a product of	CO1	K2
	primes.				
12.a)	If $b \equiv c \pmod{m}$, then prove that	(b,m)=(c,m).		CO2	K2
		[OR]			
b)	State and prove Wilson's theorem.			CO2	K2
13.a)	If p denote an odd prime. Prove that	t if $(a, p) = 1$ then		CO3	K2
	$\left(\frac{a^2b}{n}\right) = \left(\frac{b}{n}\right).$				
	\ μ / \ μ /				

	[OR]		
b)	Estimate all primes p such that $\left(\frac{10}{13}\right) = 1$ by using Legendre Symbol.	CO3	K2
14.a)	Let x and y be real numbers then prove that	CO4	K3
	(i) $[x + m] = [x] + m$, if <i>m</i> is an integer.		
	(ii) $[x] + [y] \le [x + y] \le [x] + [y] + 1.$		
	[OR]		
b)	Let x and y be real numbers then prove that	CO4	K3
	(i) if two integers are equally nearer to x , it is the smaller of the two.		
	(ii) if <i>n</i> and <i>a</i> are positive integers, $[n/a]$ is the number of integers among		
	$1,2,3,\ldots,n$ that are divisible by a .		
15.a)	Find all solutions in integers of $2x + 3y + 4z = 5$ by using Diophantine equation.	CO5	K3
	[OR]		
b)	Find all solutions in integers of $6x + 8y + 12z = 10$ by using Diophantine	CO5	K3
0)	equation.	000	
0	Section – C $[3 \times 10 = 30]$		TZ
Qn. No.	Answer ANY THREE Questions	CO(s)	K – Level
16.	State and prove the Unique factorization theorem.	CO1	K3
17.	Find all solutions of the congruence $9 x \equiv 6 \pmod{15}$.	CO2	K3
18.	State and prove Gauss Lemma.	CO3	K3
19.	Show that if $f(n)$ be a multiplicative function and $F(n) = \sum_{d n} f(d)$ then	CO4	K4
	F(n) is multiplicative.		
20.	Estimate all solutions of $12x + 18y = 30$.	CO5	K3

Reg.	No:
rug.	1,0.

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION – NOVEMBER 2021

Programme: M.Sc., MATHEMATICS	Date: 08.02.2022
Course Code: 20PMAN31	Time: 10 am To 1 pm
Course Title: Mathematics for Competitive	Max. Marks: 60
Examinations	

Qn.	Sect	ion – A	[10 x 1 = 10]		K –
No.	Answer AL	CO(s)	Level		
1.	Ravi's age after 15 years will be 5	times his age 5 years	back. What is the	CO1	K 1
	present age of Ravi?				
	a) 7	b) 8			
	c) 9	d) 10			
2.	Find the odd man out of 2,5,10,50,500),5000?		CO1	K2
	a) 0	b) 5			
	c) 10	d) 5000			
3.	A can do a certain work in 12 days	s. B is 60% more effic	ient than A. How	CO2	K1
	many days does B alone take to do	the same job?			
	a) 6 days	b) $6\frac{1}{2}$ days			
	c) 7 days	d) $7\frac{1}{2}$ days			
4.	A car moves at the speed of 80	km/hr. What is the sp	eed of the car in	CO2	K2
	meters per second?				
	a) 8 m/sec	b) $20\frac{1}{9}$ m/sec			
	c) $22\frac{2}{9}$ m/sec	d) 22 m/sec			
5.	What is 25% of 25% equal to?			CO3	K1
	a) 0.00625	b) 0.0625			
	c) 0.625	d) 6.25			
6.	Mean proportional between a and b is	·		CO3	K2
	a) ab	b) <i>a</i> + <i>b</i>			
	c) <i>a</i> – <i>b</i>	d) \sqrt{ab}			

·			
a) 8%	b) 12%		
c) 12.5%	d) 16%		
A bag contains nine y	rellow balls, three white balls and four red balls. In	CO4	K2
how many ways can tw			
<i>a</i>) 9 <i>C</i> ₂	<i>b</i>) 3 <i>C</i> ₂		
<i>c</i>) 16 <i>C</i> ₂	<i>d</i>) 12 <i>C</i> ₂		
If at least 60% marks i	n Physics are required for pursuing higher studies in	CO5	K1
Physics, how many st	rudents will be eligible to pursue higher studies in		
Physics?			
a) 27	b) 32		
c) 34	d) 41		
What is an approxima	te percentage decrease in production from 1993 to	CO5	K2
1994?			
a) 87.5%	b) 37.5%		
c) 9.09%	d) None of these		
	Section $-B$ [5 x 4 = 20]		K –
	CO(s)	Level	
Rohit was 4 times as of	ld as his son 8 years ago. After 8 years, Rohit will be	CO1	K3
twice as old as his son.	What are their present ages?		
	[OR]		
A cricketer has a certa	in average for 10 innings. In the eleventh inning, he	CO1	K3
scored 108 runs, thereb	by increasing his average by 6 runs. What is the new		
average of the cricketer	r?		
	 c) 12.5% A bag contains nine y how many ways can two a) 9C₂ c) 16C₂ If at least 60% marks if Physics, how many st Physics? a) 27 c) 34 What is an approximation of the standard sta	c) 12.5% d) 16% A bag contains nine yellow balls, three white balls and four red balls. In how many ways can two balls be drawn from the bag? a) $9C_2$ b) $3C_2$ c) $16C_2$ d) $12C_2$ If at least 60% marks in Physics are required for pursuing higher studies in Physics, how many students will be eligible to pursue higher studies in Physics? a) 27 b) 32 c) 34 d) 41 What is an approximate percentage decrease in production from 1993 to 1994? a) 87.5% b) 37.5% c) 9.09% d) None of these Section - B [5 x 4 = 20] Answer ALL the Questions Rohit was 4 times as old as his son 8 years ago. After 8 years, Rohit will be true as old as his son 8 years ago.	c) 12.5% d) 16% A bag contains nine yellow balls, three white balls and four red balls. In how many ways can two balls be drawn from the bag? a) 9C ₂ b) 3C ₂ c) 16C ₂ d) 12C ₂ If at least 60% marks in Physics are required for pursuing higher studies in Physics, how many students will be eligible to pursue higher studies in Physics, how many students will be aligible to pursue higher studies in Physics? a) 27 b) 32 c) 34 d) 41 What is an approximate percentage decrease in production from 1993 to 1994? a) 87.5% b) 37.5% c) 9.09% d) None of these Section – B [5 x 4 = 20] Answer ALL the Questions Rohit was 4 times as old as his son 8 years ago. After 8 years, Rohit will be twice as old as his son 8 years ago. After 8 years, Rohit will be CO1 twice as old as his son 8 years ago. After 8 years, Rohit will be CO3 CO3 CO4 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO

12.a) While covering a distance of 24 km, a man noticed that after walking for 1 CO2 K2 hour and 40minutus, the distance covered by him was 5/7 of the remaining distance. What was his speed in meter per second?

[OR]

b) Two pipes A and B can fill a tank in 24 min and 32 min respectively. If CO2 K2 both the pipes are opened simultaneously, after how much time B should be closed so that the tank is full in 18 minutes?

13.a) The value of a machine depreciates at the rate of 10% per annum. If itsCO3 K2 present value is Rs.1,62,000, what will be its worth after 2 years? What was the value of the machine 2 years ago?

[OR]

- b) By mixing two brands of tea and selling the mixture at the rate of Rs. 117 CO3 K2 per kg, a shopkeeper makes a profit of 18%. If to every 2 kg of one brand costing Rs. 200 per kg, 3kg of the other brand is added, then how much per kg does the other brand cost?
- 14.a) Which is better investment, 12% stock at par with an income tax at the rate CO4 K2 of 5 paise per rupee or $14\frac{2}{7}$ % stock at 120 free from income tax?

[OR]

- b) A committee has 5 men and 6 women. What are the number of ways of CO4 K2 selecting 2 men and 3 women from the given committee?
- 15.a) CO5 K3 Study the following table and answer the questions based on it. Expenditures of a Company (in Lakh Rupees) per Annum Over the given Years. Item of Expenditure Year Salary Fuel and Transport Bonus Interest on Loans Taxes 1998 288 98 3.00 23.4 83 1999 342 112 2.52 32.5 108 324 101 74 2000 3.84 41.6 336 133 3.68 36.4 88 2001

3.96

49.4

98

1. What is the average amount of interest per year which the company had to pay during this period?

142

420

2002

- 2. The total amount of bonus paid by the company during the given period is approximately what percent of the total amount of salary paid during this period?
- 3. Total expenditure on all these items in 1998 was approximately what percent of the total expenditure in 2002?
- 4. The total expenditure of the company over these items during the year 2000 is?

[OR]

b) The circle-graph given here shows the spendings of a country on various sports during a particular year. Study the graph carefully and answer the questions given below it. CO5

K3

- 1. How much percent more is spent on Hockey than that on Golf?
- 2. If the total amount spent on sports during the year be Rs. 1,80,00,000.Find the amount spent on Basketball exceeds on Tennis?
- 3. How much percent less is spent on Football than that on Cricket?
- 4. If the total amount spent on sports during the year was Rs. 2 crores, What is the amount spent on Cricket and Hockey together?

Qn. No.	Section – C [3 x 10 = 30] Answer ANY THREE Questions	CO(s)	K – Level
16.	Tanya's grandfather was 8 times older to her 16 years ago. He would be 3	CO1	K3
	times of her age 8 years from now. Eight years ago, What was the ratio of		
	Tanya's age to that of her grandfather?		
17.	Two pipes can fill a cistern in 14 hours and 16 hours respectively. The pipes	CO2	K4
	are opened simultaneously and it is found that due to leakage in the bottom		
	it took 32 minutes more to fill the cistern. When the cistern is full, in what		
	time will the leak empty it?		
18.	Mr. Jones gave 40% of the money he had, to his wife. He also gave 20% of	CO3	K3
	the remaining amount to each of his three sons. Half of the amount now left		
	was spent on miscellaneous items and the remaining amount of Rs. 12,000		

was deposited in the bank. How much money did Mr. Jones have initially?

- A man sells Rs.5000, 12 % stock at 156 and invests the proceeds party in 8 CO4 K3
 % stock at 90 and 9 % stock at 108. He hereby increases his income by Rs.
 70. How much of the proceeds were invested in each stock?
- 20. The pie-chart provided below gives the distribution of land (in a village) CO5 K3 under various food crops. Study the pie-chart carefully and answer the questions that follow.

Wheat Barley 72° Rice Jowar 18° 72° Jowar 18° 99° Bajra 45° Others

DISTRIBUTION OF AREAS (IN ACRES) UNDER VARIOUS FOOD CROPS

- 1) Which combination of three crops contribute to 50% of the total area under the food crops?
- 2) If the total area under jowar was 1.5 million acres, then what was the area (in million acres) under rice?
- 3) If the production of wheat is 6 times that of barley, then what is the ratio between the yield per acre of wheat and barley?
- 4) If the yield per acre of rice was 50% more than that of barley, then the production of barley is what percent of that of rice?
- 5) If the total area goes up by 5%, and the area under wheat production goes up by 12%, then what will be the angle for wheat in the new pie-chart?