$\square$

## G.T.N. सRTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2020
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., Mathematics
Course Code: 20PMAC11
Course Title: Algebra - I

Date: 14.02.2022
Time: 10am - 1pm
Max. Marks: 60

Qn.
Section - A
No.
Answer ALL the Questions
[ $10 \times 1=10]$

| CO(s) | K- <br> Level |
| :---: | :---: |
| CO1 | K1 |

1. The order of the symmetric group $S_{3}$ is $\qquad$ .
[a] 3
[b] 6
[c] 12
[d] 4
2. In a group $(G, *), a$ is an element of order 12. Then the order of $a^{5}$ is CO1
[b] 15
[c] 17
[d] 19
3. Let $G$ be a group of order $p^{q}$ where $p$ and $q$ are prime numbers such that $p>q$. Then $G$ can have $\qquad$ .
[a] almost one subgroup of order $p$
[b] atleast one subgroup of order $q$
[c] atleast one subgroup of order $p$
[d] atleast one subgroup of order $q$
4. If $f$ is a homomorphism $f:(R,+) \rightarrow(Z, \times)$ such that $f(2)=3$, then $f(6)$ is CO2 K2
[a] 6
[b] 9
[c] 18
[d] 27
5. The group $P_{n}$ of all permutations of degree $n$ is called $\qquad$ .
[a] the symmetric group
[b] the non-symmetric group
[c] transposition
[d] abelian group
6. What is the order of the normalizer of $\sigma=(12)(34)$ in $S_{6}$ ?
CO3 K2
[a] 8
[b] 16
[c] 24
[d] 4
7. If $O(G)=1001$, then about $G$ correct statements is $\qquad$ .
I) only 13 - sylow subgroup is normal
II) 11 - sylow subgroup 13 - sylow subgroup are normal

CO4 K1
III) all sylow subgroup are normal
IV) $G$ is non-cyclic
[a] I and IV
[b] III
[c]II and IV
[d] all are correct
8. If $O(G)=231$, then the center of $G$ is $\qquad$ .

CO4 K2
[a] 11 - Sylow sub group
[b] 7 - Sylow sub group
[c] 3 - Sylow sub group
[d] $\{e\}$
9. An integral domain $D$ is of finite characteristic, if $\forall a \in D$, there exist $m$ a

CO5 K1 positive integer such that $\qquad$ .
[a] $m a=1$
[b] $m a=0$
[c] $m a=a$
[d] $m a=a^{2}$
10. If $R$ is a ring in which $a^{4}=a$, for all $a \in R$, then $\qquad$ .
[a] $R$ is commutative
[b] $R$ is not commutative
[c] Ris zero ring
[d] $R$ is a Boolean ring

## Section-B

[5 x $4=20$ ]
Answer ALL the Questions
CO(s) $\quad \underset{\text { Kevel }}{\mathrm{K}-}$
11.a) Construct a Cayley table for $U(12)$

CO1 K2
[OR]
b) If $H$ and $K$ are subgroups of $G$ then prove that $H \cap G$ is also a subgroup of $G$.

CO1
K2
12.a) Define $\operatorname{Aut}(G)$ and prove that $\operatorname{Aut}(G)$ is a group under function composition. [OR]
b) Show that the mapping $\phi(a+b i)=a-b i$ is an automorphism of the group of complex numbers under addition. Show that $\phi$ preserves complex CO2 K2 multiplication as well.
13.a) If $G$ is a finite group and $a \in G$ then show that $a^{O(G)}=e$.
[OR]
b) Let $\phi$ be a group homomorphism from $G$ to $\bar{G}$. Prove that $\operatorname{Ker} \phi$ is a normal subgroup of $G$.
14.a) If $|G|=p^{2}$ where $p$ is prime then prove that $G$ is Abelian.
[OR]
b) Let $|G|=2 p$ where $p$ is an odd prime. Prove that $G$ is isomorphic to $Z_{2 p}$.

CO4
K3
CO5 K3 left ideal but not a right ideal.
[OR]
b) State and prove first isomorphism theorem.

CO5
K3
K Level CO1 K2
(i) center of a group $G$ is a subgroup of $G$
(ii) for any element $a$ in $G$, the centralizer of $a$ is a subgroup of $G$.
17. Let $G=S L(2, R)$ be the group of $2 \times 2$ real matrices with determinant 1 and let $M$ be any $2 \times 2$ real matrix with determinant 1 ; Prove that the mapping $\phi_{M}: G \rightarrow G$ defined by $\phi_{M}(A)=M A M^{-1}$ for all $A \in G$ isan isomorphism.
18. Let $\phi$ be a homomorphism from a group $G$ to a group $\bar{G}$ and let $H$ be a subgroup of $G$. Then prove that
(i). $\phi(G)=\{\phi(h) \mid h \in H\}$ is a subgroup of $\bar{G}$
(ii). if $H$ is normal in $G$ then $\phi(H)$ is normal in $\phi(G)$
(iii). if $\bar{K}$ is a normal subgroup of $\bar{G}$, then $\phi^{-1}(\bar{K})=\{k \in G \mid \phi(k) \in \bar{K}\}$ is a normal subgroup of $G$.
19. State and prove Sylow's third theorem.
20. Prove that $M_{2}(Z)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in Z\right\}$ is a non-commutative ring CO5 under and addition and multiplication of matrices.
$\square$

## G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B’ Grade)

## END SEMESTER EXAMINATION - NOVEMBER 2020

(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., Mathematics
Course Code: 20PMAC12
Course Title: Analysis - I

Date: 15.02.2022
Time: 10am - 1pm
Max. Marks: 60

Qn.
No.

## Answer ALL the Questions

1. Extended real number system means $\qquad$ .
$[10 \times 1=10]$
CO(s) $\quad \underset{\text { Level }}{\text { K }}$
[a] $R \cup\{\infty\} \cup\{-\infty\}$
[b] $R \cup\{\infty\}$
[c] $R \cup\{-\infty\}$
[d] $R \cup\}$
2. Let $P=\left\{(x-a)^{2}+(y-b)^{2}=1 ; a, b \in Q\right\}$ where $p$ is the set of all unit CO1

K2 circles in the complex plane with centre as rational coordinates which of the following is true?
[a] $p$ is finite nonempty set
[b] $p$ is countable
[c] $p$ is uncountable
[d] $p$ is empty
3. A subset of a complete metric space is complete if and only if it is CO2 K1
$\qquad$ -.
[a] Closed
[b] Open
[c] both [a] and [b]
[d] neither [a] nor [b]
4. If $\langle M, \rho\rangle$ be a complete metric space and A is a closed subset of M then
$<A, \rho>$ is $\qquad$ .
[a] Bounded
[b] complete
[c] connected
[d] disconnected.
5. Let $(x)=\int_{1}^{\infty} \frac{\cos t}{x^{2}+t^{2}} d t$. Then which of the following are true?
[a] $f$ is bounded on $R$
[b] $f$ is continuous on $R$
[c] $f$ is not defined everywhere on R
[d] Both [a] and [b].
6. The set $\left\{\frac{x^{2}}{1+x^{2}} / x \in R\right\}$ is $\qquad$ .
[a] connected but not compact in $R$
[b] compact but not connected in $R$
[c] connected and compact in $R$
[d] neither connected nor compact in $R$
7. The derivative of the function $f(x)=x|x|$ is $\qquad$ .
[a] $2 x$
[b] $2|x|$
[c] $-2 x$
[d] doesn't exist
8. If $f^{\prime}(x)=0$ for all $x \in[a, b]$ then $\mathrm{f}(\mathrm{x})$ is $\qquad$ on [a,b].
[a] derivative
[b] primitive
[c] constant
[d] identity -.
9. Non empty open interval is $\qquad$
[a] countable
[b] not measure zero
[c] measure zero
[d] infinite
10. If $E_{1}$ and $E_{2}$ are measurable subsets of $[\mathrm{a}, \mathrm{b}]$ then $E_{1}-E_{2}$ is $\qquad$ .

CO5 K2
[a] countable
[b] not measure zero
[c] measure zero
[d] measurable

Qn.
Section - B
Answer ALL the Questions
[5 x $4=20$ ]
No.

| CO(s) | $\mathrm{K}-$ <br> Level |
| :---: | :---: |
| CO 1 | K 2 |

b) Prove that the Cartesian product of two countable set is countable.
12.a) Let $E$ be a subset of the metric space $M$, then prove that neighborhood of $E$ is open..
[OR]
b) Show that a set E is open if and only if its complement is closed.
13.a) If f is a continuous mappings of a compact metric space X into $R^{k}$, then prove
[OR]
[OR]
b) Show that $f(x)=\left\{\begin{array}{rr}2 & \text { if } x \neq 1 \\ 3 & \text { if } x=1\end{array}\right\}$ has a removable discontinuous at $x=1$.
14.a) State and prove chain rule theorem.
b) State and prove Taylor's theorem.
CO4 K1
15.a) If $f$ is Continuous on $[a, b]$ then prove that $f \in R(\alpha)$ on $[a, b]$.
CO5 K3
[OR]
b) If $f \in R[a, b]$ then prove that $f^{2} \in R[a, b]$.

Section-C
$[3 \times 10=30]$
Qn.
CO2 K2
CO3
K3
CO 2
$\square$

## G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B’ Grade)
END SEMESTER EXAMINATION - NOVEMBER 2020
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., Mathematics
Course Code: 20PMAC13
Course Title: Ordinary Differential Equations

Date: 16.02.2022
Time: 10am - 1pm
Max. Marks: 60

Qn.
Section - A
No.
Answer ALL the Questions
[ $10 \times 1=10]$

1. What is the order and degree of differentialequation

CO(s) $\quad$| $\mathrm{K}-$ |
| :---: |
| Level | $\frac{d^{2} y}{d x^{2}}=\left[4+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 4}$ ?

[a] 2,4
[b] 4,2
[c] 2,2
[d]4,3
2. What is the Lipschitz constant of the function $f(x, y)=4 x^{2}+y^{2}$ on $R$ for CO1 K2 $|x| \leq 1,|y| \leq 1$ ?
[a] 2
[b] 3
[c] 4
[d] 0
3. The solution of the differential equation is of the form $y=p x+p^{n}$ is
[a] $y=c x+c^{n}$
[b] $y=P x$
[c] $y=c^{n}$
[d] $y=P x+P^{n}+c$
4. Which curve touches each member of one parameter family of curves?
[a] trajectories
[b]envelope [c]developable
[d] edge of regression
5. The complementary function of $\left(D^{2}-8 D+16\right) y=e^{4 x}$ is $\qquad$ .

CO 3
K1
[a] $\frac{x^{2}}{2} e^{4 x}$
[b] $A e^{4 x}+B e^{-4 x}$
[c] $A \cos 4 x+B \sin 4 x[\mathrm{~d}](A x+B) e^{4 x}$
6. The particular integral of $x^{2} y^{\prime \prime}-x y^{\prime}+y=2 \log x$ is $\qquad$ .
[a] $2 x+4$
[b] $2 \log x+4$
[c] $2 e^{x}+4$
[d] $-2 \log x+4$
7. What is the Wronskian value of $e^{x}$ ande $e^{2 x}$ ?
[a] $e^{x}$
[b] $e^{2 x}$
[c] $e^{3 x}$
[d] $e^{4 x}$

CO4
K1
8. The given functions $f$ and $g$ are independent in the differential equation, then CO4 K2 the wronskian value of the above functions is $\qquad$ .
$[\mathrm{a}] \geq 0$
[b] $\leq 0$
$[c]=0$
$[d] \neq 0$
9. The collection of all eigenvectors of a function is known as $\qquad$ _.
[a] eigenspace [b] spectrum
[c] eigenfunctions
[d] radiusfunction
10. The eigen values of the Strum liouville's problem are $\qquad$ .
[a] zero
[b] non negative
[c] imaginary
[d] real

Qn.
No.

## Section - B

## Answer ALL the Questions

$\left[\begin{array}{ccc}5 \times 4=20\end{array} c \begin{array}{c}\text { K } \\ \\ \\ \text { CO(s) } \\ \text { CO1 } \\ \text { Level }\end{array}\right.$
11.a) Solve the differential equation $\frac{d^{2} y}{d x^{2}}=x^{2} \frac{d y}{d x}+x^{4} y$ where
CO1 K2
$y=5$ and $\frac{d y}{d x}=1$, when $x=0$.
[OR]
b) Explain Picard's iterative method

CO1 K2
12.a) Find the singular solution of the differential equation
CO 2 K 2
[OR]
b) Solve the differential equation $y=p x+p-p^{2}$

CO2 K2
13.a) Solve the differential equation
$x^{4}\left(\frac{d^{4} y}{d x^{4}}\right)+6 x^{3}\left(\frac{d^{3} y}{d x^{3}}\right)+4 x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)-2 x\left(\frac{d y}{d x}\right)-4 y=2 \cos (\log x)$
[OR]
b) Solve the differential equation CO 3 K2

$$
\left(x^{4} D^{3}+2 x^{3} D^{2}-x^{2} D+x\right) y=1
$$

14.a) Solve the differential equation $y_{2}+y=\operatorname{cosec} x$.

CO4
K3
[OR]
b) Use the variation of parameters method show that solution of equation $\frac{d^{2} y}{d x^{2}}+$ CO4 K3 $k^{2} y=\phi(x)$ satisfying the initial condition $y(0)=0 ; y^{\prime}=0$ is $y(x)=\frac{1}{k} \int_{0}^{x} \phi(t) \operatorname{sink}(x-t) d t$
15.a) Find the eigen values and eigen function of Strum-liouville problem

$$
X^{\prime \prime}+\lambda X=0 \quad X(0)=0, X^{\prime}\left(\frac{\pi}{2}\right)=0
$$

[OR]
b) Prove that corresponding to each eigenvalue of Strum liouville problem there

CO5
K3 exist just one linearly independent eigenfunctions.
Qn.
No.

## Section-C

$[3 \times 10=30]$
Answer Any THREE Questions
16. Find the third approximation of the solution of the equation $\frac{d y}{d x}=z \frac{d y}{d x}=$ CO1 K2 $x^{3}(y+z)$ by Picard's method, $y=1$ and $z=\frac{1}{2}$ when $x=0$.
17. Find the general and singular solution of equation $\sin p x \cos y=$ $\cos p x \sin y+p$.
18. Solve Legendre's equation $\frac{d^{3} y}{d x^{3}}-\left(\frac{4}{3}\right)\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{5}{x^{2}}\right)\left(\frac{d y}{d x}\right)-\left(\frac{2 y}{x^{3}}\right)=1$.
19. Using the method of variation of parameters solve

$$
\left(\frac{d^{2} y}{d x^{2}}\right)-2\left(\frac{d y}{d x}\right)+y=x e^{x} \sin x \text { with } y(0)=0 \text { and }\left(\frac{d y}{d x}\right)_{x=0}=0 .
$$

20. Find the eigen values and eigen function of Strum-liouville problem CO5 K5 $X^{\prime \prime}+\lambda X=0, X^{\prime}(0)=0$ and $X^{\prime}(L)=0$.
$\square$

## G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B’ Grade)
END SEMESTER EXAMINATION - NOVEMBER 2020
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., Mathematics
Course Code: 20PMAC14
Course Title: Numerical Analysis

Date: 17.02.2022
Time: 10am - 1pm
Max. Marks: 60

Qn.
No.
Section - A
Answer ALL the Questions

1. The formula $x_{k+1}=x_{k}-\frac{f_{k}}{f_{k}^{\prime}}-\frac{1}{2} \frac{f_{k}^{2}}{f_{k}^{3}} f_{k}^{\prime \prime}$ is used in $\qquad$ method.
[a] secant
b] Regula-Falsi
[c] Chebyshev
[d] bisection
2. What is the value of $\Delta q$, if $P_{3}(x)=x^{3}+x^{2}-x+2=0$ with $p_{0}=\mathrm{CO} 1 \quad \mathrm{~K} 2$ $-0.9, q_{0}=0.9$ by using Bairstow method?
[a] 0.1047
[b] - 0.1047
[c] 0.1031
[d] - 0.1031
3. If $A=-A^{T}$ then the real matrix $A$ is $\qquad$ .
[10 x $1=10]$
CO(s)
K -
CO1 K1
[a] Symmetric
[b] Skew symmetric
[c] Orthogonal
[d] Triangular
4. The matrix $A=\left[\begin{array}{cc}-13 & -4 \\ -4 & 3\end{array}\right]$ is $\qquad$ .
[a] positive definite
[b] semi positive definite
[c] negative definite
[d] semi negative definite
5. In Lagrange linear interpolating polynomial the value of $l_{0}(x)$ is $\qquad$ . CO 3 K 1
[a] $\frac{x+x_{1}}{x_{0}+x_{1}}$
[b] $\frac{x-x_{1}}{x_{0}+x_{1}}$
[c] $\frac{x-x_{1}}{x_{0}-x_{1}}$
[d] $\frac{x_{1}-x}{x_{1}-x_{0}}$
6. The value of $x$ if $\mathrm{x}_{0}=0.6, \mathrm{n}=2.6$ and $\mathrm{h}=0.2$.

CO 3 K 2
[a] 12
[b] 1.2
[c] 1.12
[d] 1.22
7. The approximation may further deteriorate as the order of $\qquad$ increases.
[a]Derivative
[b] Divide
[c] Converge
[d] Diverges
8. Trapezoidal rule gives exact value of the integral when the integrand is a $\qquad$ -.
[a] linear function
[b] quadratic function
[c] cubic function
[d] polynomial of any degree
9. In the second order Runge-kutta method the slope of $K_{1}$ is $\qquad$ .
[a] $h f\left(t_{j}, u_{j}\right)$
$[\mathrm{b}] h+f\left(t_{j}, u_{j}\right)$
[c] $h-f\left(t_{j}, u_{j}\right)$
[d] $f\left(t_{j}, u_{j}\right)$
10. What is the percentage relative error if $=0.67, u^{*}=0.66$ ?

CO5 K2
[a] 1.5925
[b] 1.4925
[c] 1.3925
[d] 0

Qn.
Section-B
[5 x $4=20$ ]
No.
Answer ALL the Questions
11.a) Perform two iterations of the Chebyshev method to find an approximate value CO1 K2 of $\frac{1}{7}$, with initial approximation as $x_{0}=0.1$.
[OR]
b) Performone iteration of the Bairstow method to find the smallest positive root of the equation $f(x)=x^{3}+x^{2}-x+2=0 p=-0.9, q=0.9$.
12.a) If $A$ is strictly diagonally dominant matrix, then show that the Jacobi iteration scheme converges for any initial starting vector.
b) Perform one iteration to find the solution of the system of equations
$\left[\begin{array}{lll}4 & 1 & 1 \\ 1 & 5 & 2 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ -6 \\ -4 \_\end{array}\right]$by using Jacobi iteration method.
13.a) Obtain the piecewise quadratic interpolation polynomial for the function $f(x)$ defined on the interval $[-3,-1]$ by the data.

| $x$ | -3 | -2 | -1 | 1 | 3 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 369 | 222 | 171 | 165 | 207 | 990 |

Calculate the approximate value of $f(-2.5)$.
[OR]
b) Calculate the value of $f(1.5)$ by using quadratic spline interpolation with $M(0)=f^{\prime \prime}(0)=0$ for the given data.

| $x$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :--- |
| $f(x)$ | 1 | 2 | 33 |

14.a) Find the Jacobian matrix for the system of equations $f_{1}(x, y)=x^{2}+x y^{2}-$ $y^{3}=0$ and $f_{2}(x, y)=x y+5 x+6 y=0$ at the points $(1,2)$ and $(0.5,1)$.
[OR]
b) Find the value of $\mathrm{I}=\int_{0}^{1} \frac{d x}{1+x^{2}}$ using the Simpson's rule.
15.a) Using the Euler method to calculate the values of CO5 K3 $u(0.2)$ and $u(0.4)$ numerically the initial value problem
$u^{\prime}=-2 t u^{2}, u(0)=1$ with $h=0.2$ on the interval $[0,1]$. [OR]
b) Calculate the value of $y(0.1)$ Runge-Kutta method of third order given that CO5 K3 $u^{\prime}=u^{2}+u t, u(1)=1$.
Qn.
No.

## Section - C

$$
[3 \times 10=30]
$$

## Answer Any THREE Questions

Graeffe's root squaring method.
17.

Determine all the eigen values of the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1\end{array}\right]$ using the
Jacobi method. Iterate till the third rotation.
18. $S_{3}(x)$ is the piecewise cubic Hermite interpolating approximant of $f(x)=$ $\sin x \cos x$ in the abscissas $0,1,1,5,2,3$. Estimate the errormax $x_{0 \leq x \leq 3} \mid f(x)-$ $S_{3}(x) \mid$.
19. Solve the integral $\mathrm{I}=\int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} \cos x d x$, using the Gauss-Chebyshev 1 -point, 2-point and 3-point quadrature rules.
20. Solve the initial value problem
$\mathrm{C}: u_{j+1}=u_{j}+\frac{h}{2}\left(u_{j+1}^{\prime}+u_{j}^{\prime}\right)$, and also estimate $P(E C)^{m} \mathrm{E}, \mathrm{m}=2$
$\qquad$
$\square$

## G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B’ Grade)
END SEMESTER EXAMINATION - NOVEMBER 2020
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., Mathematics
Course Code: 20PMAC15
Course Title: Integral Equations

Date: 18.02.2022
Time: 10am - 1pm
Max. Marks: 60

Qn.
No.

1. The
type $\phi(x) y(x)=f(x)+\lambda \int_{a}^{b} k(x, t) y(t) d t$ where $\phi(x), f(x)$ and $k(x, t)$ are known functions, $a$ and $b$ are known constant and $\lambda$ is a known parameter, is a $\qquad$ .
[a] linear integral equation of Volterra type
[b] linear integral equation of Fredholm type
[c] non-linear integral equation of Volterra type
[d] non-linear integral equation of Fredholm type
2. The solutions corresponding to eigen values of $\lambda$ can be expressed as
$\qquad$ _.
[a] sum of eigenfunctions
[b] difference of eigenfunctions
[c] arbitrary multiples of eigenfunctions
[d] product of eigenfunctions
3. The solution of the integral equation $y(x)=\sin x-\frac{x}{4}+\frac{1}{4} \int_{0}^{\frac{\pi}{2}} x t y(t) d t$ is -.
$\qquad$
[a] $y(x)=\cos x$
[b] $y(x)=\sin x$
[c] $y(x)=\tan x$
[d] $y(x)=0$
4. The initial value problem corresponding to the integral equation $y(x)=1+$ $\int_{0}^{x} y(t) d t$ is $\qquad$ .
[a] $y^{\prime}-y=0, y(0)=1$
[b] $y^{\prime}+y=0, \mathrm{y}(0)=0$
[c] $y^{\prime}-y=0, y(0)=0$
[d] $y^{\prime}+y=0, y(0)=1$
5. For the homogeneous Fredholm integral equation $\phi(x)=\lambda \int_{0}^{1} e^{x+t} \phi(t) d t$ a CO 3

K1 non-trivial solution exists, then the value of $\lambda$ is $\qquad$ .
[a] $\lambda=2 / e-1$
[b] $\lambda=1 / e^{2}+1$
[c] $\lambda=1 / e+1$
[d] $\lambda=2 / e^{2}-1$
6. If $\lambda_{1}, \lambda_{2}$ be the eigen values and $f_{1}, f_{2}$ be the corresponding eigen functions for the homogeneous integral equation $y(x)=\lambda \int_{0}^{1}\left(2 x t+4 x^{2}\right) y(t) d t$, then
$\qquad$ .
[a] $\lambda_{1}=\lambda_{2}$
[b] $\lambda_{1} \neq \lambda_{2}$
[c] either a or b.
[d] both $a$ and $b$.
7. Let $\emptyset(x)$ be the solution of $\int_{0}^{x} e^{x-t} \emptyset(t) d t=x, x>0$ then $\emptyset(1)$ equals $\qquad$
CO4 K1
[a] -1
[b] 0
[c] 1
[d] 2
8. Consider the integral equation $y(x)=x^{3}+\int_{0}^{x} \sin (x-$
$\qquad$ .
[a] $\frac{19}{20}$
[b] 1
[c] $\frac{17}{20}$
[d] $\frac{21}{20}$
9. The resolvent kernel $\mathrm{R}(\mathrm{x}, \mathrm{t}, \lambda)$ for the volterra integral equation $\phi(x)=x+$ $\lambda \int_{0}^{x} \phi(x) d s$ is $\qquad$ .
[a] $e^{\lambda(x+t)}$
[b] $e^{\lambda(x-t)}$
[c] $\lambda e^{x+t}$
[d] $e^{\lambda x t}$
10. Using the method of successive approximations, the solution of the integral equation $y(x)=1+\int_{0}^{x}(x-t) y(t) d t, y_{0}(x)=1$ is $\qquad$ -.
[a] $y(x)=\sin x$
$[\mathrm{b}] ~ y(x)=\cos x$
$[c] y(x)=\cosh x \quad[d] y(x)=\sinh x$

Qn.
Section - B
[5 $\times 4=20$ ]
Answer ALL the Questions
CO(s)
K -

CO1
K2
11.a) Findthe solution of the Fredholm integral equation
$y(x)+\int_{0}^{1} x\left(e^{x t}-1\right) y(t) d t=e^{x}-x ; y(x)=1$.
[OR]
b) Explain Volterra integral equation and its kind.

CO1
K2
12.a) Convert the following differential equation into integral equation $y^{\prime \prime}+y=$ CO 2

K2 $0, y(0)=0, y^{\prime}(0)=0$.
[OR]
b) Convert the integral equation into differential equation
$y(x)=\int_{0}^{x}(x-t) y(t) d t-x \int_{0}^{1}(1-t) y(t) d t$.
13.a) Find the homogeneous Fredholm integral equation of the second
kind $y(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) y(t) d t$.
[OR]
b) Find the eigenvalues and the corresponding eigenfunctions of the
homogeneous integral equation $y(x)=\lambda \int_{0}^{1}\left(2 x t-4 x^{2}\right) y(t) d t$.
14.a) Solve $y(x)=f(x)+\lambda \int_{0}^{1} x t y(t) d t$.
[OR]
b) Solve the integral equation $y(x)=x+\lambda \int_{0}^{1}\left(4 x t-x^{3}\right) y(t) d t$.

CO4
K3
CO5
K3 $(1+x)(1-t) ; a=0, b=1$.
[OR]
b) Using iterative method, solve $y(x)=f(x)+\lambda \int_{0}^{1} e^{x-t} y(t) d t$.

Qn.

## Section - C

$[3 \times 10=30]$
No.

## Answer Any THREE Questions

16. Examine the function $y(x)=e^{x}$ is a solution of the integral equation

$$
y(x)+\lambda \int_{0}^{1} \sin x t y(t) d t=1
$$

17. Modify the integral equation into differential equation $y(x)=1-x-$
18. Determine the eigenvalues and eigenfunctions of the homogeneous equation
$y(x)=\lambda \int_{0}^{1} k(x, t) y(t) d t$, where $K(x, t)=\left\{\begin{array}{l}x(t-1), 0 \leq x \leq t \\ t(x-1), t \leq x \leq 1\end{array}\right.$
19. Evaluate the Fredholm integral equation of the second kind

$$
y(x)=x+\lambda \int_{0}^{1}\left(x t^{2}+x^{2} t\right) y(t) d t
$$

20. Evaluate $y(x)=x+\int_{0}^{x}(t-x) y(t) d t$.

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## G.T.N. ARTS COLLEGE(AUTONomous)

(Affiliated to Madurai Kamaraj University) $\|($ Accredited by NAAC with 'B' Grade)

## END SEMESTER EXAMINATION - NOVEMBER 2021

(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme :M.Sc., MATHEMATICS
Course Code : 20PMAC21
Course Title : Algebra - II

Date: 03.02.2022
Time: 2:00 PM-5:00PM
Max. Marks 60

Qn.
No.
Section-A (10*1 = $\mathbf{1 0}$ Marks)

## Answer ALL the Questions

If an ideal $U$ of a ring $R$ contain a unit of $R$, then $\qquad$ .
[a] $U=R$
[b] $U \neq R$
[c] $U<R$
[d] $U<R$

Which of the following is not a field?
2.
[a] $\frac{Z}{2 Z}$
[b] $\frac{Z}{3 Z}$
[c] $\frac{Z}{4 Z}$
[d] $\frac{Z}{5 Z}$

If $f(x)$ and $g(x)$ are primitive polynomials, then $\qquad$ is a primitive polynomials.
3.
[a] $f(x) / g(x)$
[b] $f(x)=g(x)$
[c] $f(x)-g(x)$
[d] $f(x) g(x)$

If $f(x), g(x)$ are in $R[x]$, then $c(f g)=$ $\qquad$
4. $[\mathrm{a}] c(g) c(f)$
[b] $c(f) c(g)$
[c] $c f(c g)$
[d] $c(f g)$
If $L$ is a finite extension of $K$ and if $K$ is a finite extension of $F$, then
5. $\qquad$ _.

| $[\mathrm{a}] L$ is a Finite extension of $F$ | $[\mathrm{~b}] K$ is a finite extension |
| :--- | :--- |
| $[\mathrm{c}] F$ is a finite extension of $K$ | $[\mathrm{~d}]$ None of these |
| If $a \in K$ is algebraic of degree $n$ over $F$, then |  |
| $\begin{array}{ll}{[\text { a }[F(a) \cdot F]<n} & \end{array}$ |  |

CO3 K1
$[$ a] $[F(a) . F]<n$.
[b] $[F(a): F]>n$
[c] $[F(a): F]=n$.
[d] $[F(a): F] \geq n$

Let $K$ be a field and let $G$ be a finite subgroup of the multiplicative group of non-zero elements of $K$. Then $G$ is $\qquad$
[a]Cyclic group
[b] Field
[c] Isomorphic
[d] None of these

CO4 K1

If $K$ in algebraic of degree $n$ over $F$, then $[F(a): F]=$ $\qquad$
CO3 K2
CO 2
[a] 1
[b] 0
[c] $2 n$
[d] $n$
$K$ is a normal extension of $F$ is $K$ is a finite extension of $F$ such that $F$ is
9.
the $\qquad$ of $G(K, F)$
[a]subfield
[b] automorphism
[c] fixed field
[d] subgroup
10. The fixed field of $S_{n}$ they form a subfield of $F\left(X_{1}, \ldots \ldots X_{n}\right)$ called the $\qquad$ CO5 K2
of symmetric rational function.
[a] group
[b] subfield.
[c] field
[d] ring

| Qn. | Section - B (5 $* 4=20$ Marks) |  |
| :--- | :---: | :---: |
| No. | Answer ALL the Questions | CO(s) | | $\mathrm{K}-$ |
| :---: |
| Level |

11.a) Let $R$ be Euclidean ring. Then prove that any two elements $a$ and $b$ in $R$ have $\begin{aligned} & \text { greatest common division } d \text {. Also prove that } d=\lambda a+\mu b \text { for some } \lambda, \mu \in R \text {. }\end{aligned}$ [OR]
11.b) If p is a prime number of the form $4 n+1$ then solve the congruence $x^{2} \equiv \quad \mathrm{CO} 1$
$-1(\bmod p)$.
12.a) State and prove Gauss Lemma.

CO 2
[OR]
12.b) If $a \in R$ is an irreducible element and $a / b c$, then prove that $a / b$ or $a / c$.

CO 2
K2
If $L$ is a finite extension of $F$ and $K$ is a subfields of $L$ which contains $F$, then
13.a) prove that $[K: F] \mid[L: F]$.
[OR]
13.b) Prove that the sum of two algebraic integers is an algebraic integer.

CO3
K2
Prove that for any $f(x), g(x) \in F[x]$ and any $\alpha \in F$,
14.a)

1. $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
2. $(\alpha f(x))^{\prime}=\alpha f^{\prime}(x)$
3. $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.
[OR]
14.b) Show that any field of characteristic zero is perfect.

CO4
15.a) Prove that $G(K, F)$ is a subgroup of the group of all automorphisms of K. CO5 [OR]
15.b)

If $K$ is finite extension of $F$, then prove that $G(K: F)$ is a finite group and its order $O(G(K: Q))$ satisfies $\quad O(G(K: F)) \leq[K: F]$.
$\begin{array}{lc}\text { Qn. } & \text { Section }-\mathbf{C}(3 * \mathbf{1 0}=\mathbf{3 0} \text { Marks }) \\ \text { No. } & \text { Answer ANY } \mathbf{3} \text { Questions }\end{array}$
CO5 K3
CO4
K3
16. Prove that if $R$ is a commutative ring with unit element and $M$ is an ideal of $\quad \mathrm{CO} 1 \quad \mathrm{~K} 2$
$R$, then $M$ is a maximal ideal of $R$ if and only if $R / M$ is a field.
16. Prove that if $R$ is a commutative ring with unit element and $M$ is an ideal of $\mathrm{CO} 1 \quad \mathrm{~K} 2$
$R$, then $M$ is a maximal ideal of $R$ if and only if $R / M$ is a field.
17. State and prove the Eisenstein Criterion.

CO2
CO(s)
K -

Prove that the element $a \in K$ is algebraic over $F$ if and only if $F(a)$ is a
18. finite extension of $F$.
19. Prove that any finite extension of field of characteristic 0 is simple extension.

CO4 K3
20. State and prove fundamental theorem of Galois theory. CO5

K4
$\square$

## G.T.N. ARTS COLLEGE(AUTONOMOUS)

(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., MATHEMATICS
Course Code: 20PMAC22
Course Title: Analysis - II

Date: 04.02.2022
Time: 2 pm To 5 pm
Max. Marks: 60

Qn.
Section - A
$[10 \times 1=10]$
No.

## Answer ALL the Questions

1. The sequence $a_{n}=\{1,1,1, \ldots\}$ converges to $\qquad$ .

|  | $\mathrm{CO}(\mathrm{s})$ |
| :--- | :---: |
|  | $\mathrm{K}-$ |
| Level |  |

[a] $\infty$
[b] 1
[c] n
[d] 0
2. The series $\sum \frac{(-1)^{n}}{n}$ is conditionally $\qquad$ .
[a] Monotonic
[b] Divergent
[c] Convergent
[d] Both a and b
3. If every uniformly converges sequence is also $\qquad$ .
[a] Converges
[b] Diverges
[c] Pointwise converges
[d] Bounded
4. For every interval $[a, a]$ there is a sequence of real polynomials $P_{n}$ such that

CO 2 $P_{n}(x)=$ $\qquad$ .
[a] 0
[b] 1
[c] $\infty$
[d] -1
5. Every member of an equicontinuous family is $\qquad$ .
[a] Continuous
[b] Discontinuous
[c] equi continuous
[d] uniform continuous
6. If $K$ is compact if $f_{n} \in l(k)$ for $n=1,2,3, \ldots \ldots$ and if $\left\{f_{n}\right\}$ is pointwise

CO 3 bounded and equi continuous on $K$ then $\left\{f_{n}\right\}$ is a $\qquad$ on $K$.
[a] Uniformly bounded
[b] Uniformly continuous
[c] Equicontinuous
[d] Bounded
7. A mapping $A$ of a vector space $X$ into a vector space $Y$ is said to be a $\qquad$ . CO 4
[a] Spans
[b] Linear transformation
[c] subspace
[d] Invertible
[a] $d(x, y) \leq c d(x, y)$
[b] $\quad d(x, y) \geq c d(x, y)$
[c] $d(x, y)<c d(x, Y)$
[d] $d(x, y)>c d(x, y)$
9. If $A \in L\left(R^{n}\right)$ then A is invertible if and only if rank of A is $\qquad$ .
[a] 1
[b] 2
[c] n
[d] $n^{2}$
10. If P is a projection in X , then every element x of X has unique solution of the form $\qquad$ where $x_{1} \in R(P), x_{2} \in N(P)$.
[a] $x=x_{1}+x_{2}$
[b] $x=x_{1}-x_{2}$
[c] $x=x_{1} \cdot x_{2}$
[d] None of these

Qn.
Section - B
[5 x $4=20]$
No.

## Answer ALL the Questions

11.a) If $\left\{k_{n}\right\}$ is a sequence of compact sets in $X$ such that $K_{n} \supset K_{n+1}(n=$ $1,2, \ldots$ ) and if $\lim _{n \rightarrow \infty} \operatorname{diam} K_{n}=0$, then prove that $\cap_{n=1}^{\infty} K_{n}$ consists of exactly one point.
[OR]
b) Prove that Cauchy sequence in a metric space is bounded.
12.a) Show that a convergent series of continuous functions may have a CO 2 discontinuous sum.
[OR]
b) Prove that limit sequence of integrable function is need not be integrable.
13.a) If $K$ is a compact metric space, if $f_{n} \in C(K)$ for $n=1,2,3, \ldots$ and if $\left\{f_{n}\right\}$ CO3 converges uniformly on $K$, then prove that $\left\{f_{n}\right\}$ is equi-continuous on $K$.
[OR]
b) Let $B$ be the uniform closure of an algebra $A$ of bounded functions. Then prove that $B$ is uniformly closed algebra.
14.a) Let $A \in L\left(R^{n}, R^{m}\right), B \in L\left(R^{n}, R^{m}\right)$ and $C \in L\left(R^{m}, R^{k}\right)$. Then prove that
a) For $x \in R^{n},|A x| \leq||A|||x|$,
b) If $|A x| \leq \lambda|x|$ for all $x \in R^{n}$, then $||A|| \leq \lambda, \lambda \in R$.

> [OR]
b) Suppose $f$ maps a convex open set $E \subseteq R^{n}$ into $R^{m}, f$ is differentiable in $E \quad \mathrm{CO} 4$ and there is a real number $M$ such that $\left\|f^{\prime}(x)\right\| \leq M$ for every $x \in M$. Then prove that $|f(b)-f(a)| \leq M|b-a|$ for all $a \in E, b \in E$.
15.a) Suppose $X$ and $Y$ are vector spaces and $A \in L(X, Y)$. Prove that $R(A)$ is a CO5 vector space in $Y$.
[OR]
b) Suppose $f$ is defined in an open set $E \subset R^{2}$, suppose that $D_{1} f, D_{21} f$ and $D_{2} f \quad \operatorname{CO} 5$ K3 exist at every point of $E$, and $D_{21} f$ is continuous at some point $(a, b) \in E$.
Qn.
Section - C
[ $3 \times 10=30]$ No.

## Answer ANY THREE Questions

16. Prove that $e$ is irrational.
17. Prove that a sequence of functions $\left\{f_{n}\right\}$ converges point wise to $f$ with respect CO 2 K -
$\mathrm{CO}(\mathrm{s})$ Level to metric of $C(X)$ if and only if $f_{n} \rightarrow f$ uniformly on $X$.
18. State and Prove Stone Weierstrass Theorem.
CO3
19. State and prove inverse function theorem.
CO4
20. a) If $P$ is a projection in $X$, then prove that every element $x \in X$ has unique CO5 representation of the form $x=x_{1}+x_{2}$ where $x_{1} \in R(P)$ and $x_{2} \in N(P)$.
b) If $X$ is a finite dimensional vector space and if $X_{1}$ is a vector space in $X_{1}$, then prove that there exists a projection $P$ in $X$ with $R(P)=X_{1}$.

G.T.N. ARTS COLLEGE (Autonomous)
(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with ‘B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., MATHEMATICS
Course Code: 20PMAC23
Course Title: Partial Differential Equations

Date: 05.02.2022
Time: 2 pm . To 5 pm
Max. Marks: 60

Qn.
No.
Section-A

## Answer ALL the Questions

1. Which of the following is an example for first order linear partial differential equation?
[a] Lagrange's partial differential equation
[b] Clairaut's partial differential equation
[c] One-dimensional wave equation
[d] One-dimensional Heat equation
2. The solution of the Lagrange's partial differential equation $x p+y q=z \quad$ CO1 is $\qquad$ _.
[a] $f(x / y, z / y)=0$
[b] $f(y / x, y / z)=0$
$[\mathrm{c}] \mathrm{f}(\mathrm{x} / \mathrm{y}, \mathrm{y} / \mathrm{z})=0$
[d] $f(x, y)=0$
3. Which of the following represents the equation $U_{x x}+U_{y y}=U_{z}$ is
[a] Parabolic
[b] Hyperbolic
[c] Elliptic
[d] None of these above
4. The first canonical form of the PDE of $W_{\xi \xi}+b(\xi, \eta) W_{\xi \eta}+$
$c(\xi, \eta) W_{\eta \eta}=\phi\left(\xi, \eta, W, W_{\xi}, W_{\eta}\right)$ given by $W_{\xi \eta}=$ $\psi\left(\xi, \eta, W, W_{\xi}, W_{\eta}\right)$ is $\qquad$
[a] $\mathrm{a}=\mathrm{c}=0$
[b] $\mathrm{b}=0, \mathrm{c}=-\mathrm{a}$
[c] $\mathrm{a}=\mathrm{b}=0$
[d] $\mathrm{b}=0, \mathrm{c}=\mathrm{a}$
5. The singular solution of $y=p x+a\left(1+p^{2}\right)^{1 / 2}$ is $\qquad$ .
[a] Parabola
[b]Hyperbola
[c] Circle
[d] Straight line
6. Consider the assertion (A) and reason (R) given below:

Assertion(A): $y=0$ is the singular solution of the differential
equation $9 y p^{2}+4=0$ where $p=\frac{d y}{d x}(x-c)^{2} / a$
Reason(R): $y=0$ occurs both in $p$-discriminant and $c$-discriminant
obtained from its general solution $y^{3}+(x+c)^{2}=0$ of $9 y p^{2}+4=0$
[a] Both A and R are true and R is correct explanation of A
[b] Both A and R are true and R is not correct explanation of A
[c] A is true but $R$ is false
[d] A is false but R is true
7. If $u(x, t)$ satisfy the partial differential equation $\left(\partial^{2} u / \partial t^{2}\right)=4\left(\partial^{2} u / \partial x^{2}\right), \quad$ CO4 then $u(x, t)$ can be of the form $\qquad$ .
[a] $\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{f}(\mathrm{x}-2 \mathrm{t})+\mathrm{g}(\mathrm{x}+2 \mathrm{t})$
[b] $\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{f}\left(x^{2}-4 t^{2}\right)+\mathrm{g}\left(x^{2}+4 t^{2}\right)$
$[c] u(x, t)=f(2 x-4 t)+g(x+2 t)$
[d] $u(x, t)=f(2 x-t)+g(2 x+t)$
8. If $u=u(x, t)$ be the solution of the Cauchy problem $\frac{\partial u}{\partial t}+\left(\frac{\partial u}{\partial x}\right)^{2}=1, x \in \quad \mathrm{CO} 4$ $R, t>0$. Then $\qquad$ .
[a] $u(x, t)$ exists for all $x \in R$, and $\mathrm{t}>0$.
[b] $[u(x, t), 0] \rightarrow \infty$ as $t \rightarrow \infty$ for some $t>0$ and $x \neq 0$
[c] $u(x, t)>0$ for all $x \in R$ and for all $t<\frac{1}{4}$
[d] $u(x, t)>0$ for all $x \in R$ and $0<t<1 / 4$
9. Let $u(x, t)=e^{i w x} v(t)$ with $v(0)=1$ be a solution to $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{3} \mathrm{u}}{\partial \mathrm{x}^{3}}$. Then
$\qquad$ _.
[a] $u(x, t)=e^{i w\left(x-w^{2} t\right)}$
$[b] u(x, t)=e^{i w x-w^{3} t}$
[c] $u(x, t)=e^{i w\left(x+w^{2} t\right)}$
[d] $u(x, t)=e^{i w^{3}(x-t)}$
10. Which one of the following is true for the wave equation:

$$
\begin{aligned}
\left(\partial^{2} u / \partial x^{2}\right) & +\left(\partial^{2} u / \partial y^{2}\right)+\left(\partial^{2} u / \partial z^{2}\right) \\
& =\left(1 / c^{2}\right) \times\left(\partial^{2} u /\left(\partial t^{2}\right) ?\right.
\end{aligned}
$$

[a] Elliptic
[b] Parabolic
[c] Hyperbolic
[d] All the above

Qn.
No.

## Section - B

[5 x $4=20$ ]
Answer ALL the Questions
11.a) Describe the equation $\left(x^{2}+2 y^{2}\right) p-x y q=x z$.
b) Describe the equation $p+3 q=5 z+\tan (y-3 x)$.
12.a) Classify the following partial differential equation $x y r-\left(x^{2}-y^{2}\right) s-x y t+p y-q x=2\left(x^{2}-y^{2}\right)$
[OR]
b) Describe $y(x+y)(r-s)-x p-y q-z=0$
13.a) Describe the equation

$$
x^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}\right)-3 x y\left(\frac{\partial^{2} z}{\partial x \partial y}\right)+2 y^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}\right)+5 y\left(\frac{\partial z}{\partial y}\right)-2 z=0
$$

[OR]
b) Describe the equation $y t-q=x y$ $\frac{\partial u}{\partial x}=4\left(\frac{\partial u}{\partial y}\right)$, if $u(0, y)=8 e^{-3 y}$.
[OR]
b) Apply the method of separation of variables, solve: $(\partial u / \partial x)-u=2(\partial u / \partial t)$, where $u(x, 0)=6 e^{-3 x}$.
15.a) Explain D'Alembert's solution of one dimensional wave equation.
[OR]
b) Solve the one dimensional diffusion equation $\frac{\partial^{2} u}{\partial x^{2}}=\left(\frac{1}{k}\right)\left(\frac{\partial u}{\partial t}\right)$ in the range $0 \leq x \leq 2 \pi, t \geq 0$ subject to the boundary conditions $u(x, 0)=\sin 3 x$ for $0 \leq x \leq 2 \pi$ and $u(0, t)=u(0,2 \pi)=0$ for $t \geq 0$.

Qn.
Section-C
[ $3 \times 10=30]$
No.

## Answer ANY THREE Questions

16. Solve, $2 x z-p x^{2}-2 q x y+p q$ and also find the complete and singular integrals.
17. Solve the differential equation
$(y-1) r-\left(y^{2}-1\right)+y(y-1) t+p-q=2 y e^{2 x}(1-y)^{3}$ to canonical form.
18. Solve: $\left(x^{2} D^{2}-2 x y D D^{\prime}-3 y^{2} D^{\prime 2}+x D-3 y D^{\prime}\right) z=x^{2} y \cos \left(\log x^{2}\right)$
19. Solve CO3 CO4

CO5 CO5 CO3 K3
$\partial u / \partial t=\left(\partial^{2} u / \partial x^{2}\right), 0<x<3, t>0$, given that $u(0, t)=u(3, t)=$
$0, u(x, 0)=5 \sin 4 \pi x-3 \sin 8 \pi x+2 \sin 10 \pi x,|u(x, t)|<M, M$ being a positive real number.
20. Determine the D'Alembert's solution of the following Cauchy problem of CO5 an infinite string

$$
\begin{aligned}
u_{u}-c^{2} u_{x x}= & 0, x \in R, \quad t>0, u(x, 0)=f(x), x \in R, u_{1}(x, 0) \\
& =g(x) x \in R .
\end{aligned}
$$

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

G.T.N. ARTS COLLEGE(AUTONOMOUS)
DINDIGUL - 624005
(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATIONS - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., Mathematics
Course Code: 20PMAC24
Course Title : Operations Research

Date: 07.02.2022
Time: 2 pm. - 5 pm
Max. Marks 60

Qn.
No.

1. While solving IP problem any non integer variable in the solutions is picked- up to
$\qquad$ -.
[a] Obtain the cut constraint
[b] Enter the solutions
[c] Leave the solution
[d] None of the above
2. If all the variables in the optimum solutions thus obtained have $\qquad$ .
[a] Variable values
[b] Non integer values
[c] Only integer values
[d] None of these
3. The important advantage of goal programming is that it can be solved by modified version of $\qquad$ .
[a] simplex method
[b] dual simplex method
[c] GP model
[d] single goal model
4. Goal programming can be applied to almost $\qquad$ managerial decision areas.
[a] unlimited
[b] limited
[c] equal
[d] none of these
5. If the earliest starting time for an activity is 8 weeks, the latest finish time is 37 weeks and the duration time of the activity is 11 weeks, then the total is equal to
$\qquad$ .
[a] 18 weeks
[b] 14 weeks
[c] 56 weeks
[d] 40 weeks
6. Which one of the following is assumed for timing the activities is PERT network?
[a] $\alpha$ distribution
[b] $\beta$ distribution
CO 3
[c] Binomial distribution
[d] Erlangian distribution
7. The individual's satisfaction level over a risky decision and its outcomes is $\qquad$ .
[a] Events
[b] Payoff table
CO4 K1
[c] Utilities
[d] Acts
8. The environment where the availability of information for a decision environment is partial, then it is known as $\qquad$ _.
[a] Decision making under Risk
[b] Decision making under Uncertainty
[c] Decision making under certainty
[d] Decision making under Conflict
9. Which one of the following satisfies the necessary and sufficient condition for an absolute maximum of $\mathrm{f}(\mathrm{x})$ at $\bar{x}$ in Kuhn Tucker method is following:
I. $\frac{\partial L(\bar{x}, \bar{\lambda}, \bar{s},)}{\partial x_{j}}=0, \mathrm{j}=1,2, \ldots \mathrm{n}$
II. $\lambda_{i}\left(g_{i}(\bar{x})-\left(b_{i}\right)=0, i=1,2, \ldots . n\right.$
III. $\left(g_{i}(\bar{x}) \leq\left(b_{i}\right), i=1,2, \ldots . n\right.$
IV. $\lambda_{i} \geq 0, i=1,2, \ldots . n$
[a] $1 \& 2$
[b] $2 \& 3$
[c] $1 \& 3$
[d] all of above
10. In General Quadratic Programming Problem if $X^{T} Q X$ is negative definite then it is
$\qquad$ in X over all of $R^{n}$.
[a] concave
[b] con vex
[c] Strictly concave CO5
[d] strictly convex

Qn.

## No.

11.a) Define Goal Programming and Distinguish between LP and Goal Programming [OR]
11.b) Explain the algorithm involved in the iterative solution to all L.P.P
12.a) A company is considering all allocation of Rs. 150,000 advertising budget to two magazines (A and B). Rated exposures per hundred rupees of advertising expenditure are 1,000 and 750 , respectively, for the two magazines; and it has been forecast that on the average Rs. 10 in sales results from each advertisement exposure. Management has decided that no more than $75 \%$ of the advertising budget can be expended in magazine [A] The company has indicated that it would like to achieve exactly 1.5 million exposures from its advertising program. Management's objective is to allocate its money to advertising in such a way that sales (Rs.) are maximized.

## [OR]

12.b) Give the difference between linear programming and goal programming.

CO 2 K 2
13.a) Mention the main features of critical path.

## [OR]

13.b) Consider the following network where nodes have been numbered according to the Fulkerson's Rule. Numbers along various activities represent the normal time ( $D_{i j}$ ) required to finish that activity


CO3
K3
14.a) Under an employment promotion programming, it is proposed to allow sale of newspapers on the buses during off-peak hours. The vendor can purchase the newspaper at a special concessional rate of 25 paise per copy against the selling price CO4 K3 of 40 paise. Unsold copies are, however, a dead loss. A vendor has estimated the
following probability distribution for the number of copies demanded.

| Number of copies demanded | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.04 | 0.19 | 0.33 | 0.26 | 0.11 | 0.07 |

How many copies should he order so that his expected profit will be maximum?
[OR]
14.b) A manager must choose between two investments $A$ and $B$ which are calculated to yield net profits of Rs. 1,200 and Rs. 1,600 respectively, with probabilities is subjectively estimated at 0.75 and 0.60 . Assume the manager's utility function reveals that utilities for Rs. 1,200 and Rs. 1,600 amounts are 40 and 45 units, respectively. What is the best choice on the basis of expected utility value (EUV)?
15.a) Prove that necessary and sufficient conditions for the optimum solution of the following non-linear programming problem:

Minimize $z=f\left(x_{1}, x_{2}\right)=3 e^{2 x_{1}+1}+2 e^{x_{2}+5}$, Subject to the constraints:
$x_{1}+x_{2}=7$, and $x_{1}, x_{2} \geq 0$
[OR]
15.b) Find the dimensions of a rectangular parallelopiped with largest volume whose sides are parallel to the coordinate plane ,to be inscribed in the ellipsoid $G(x, y, z) \equiv\left(\frac{x 2}{a 2}\right)+\left(\frac{y 2}{b 2}\right)+\left(\frac{z 2}{c 2}\right)-1=0$

Qn.

## Section - C

$[3 \times 10=30]$
No.

## Answer ANY THREE Questions

16. Use Branch-and-Bound method technique to solve the following integer programming problem $\operatorname{Max} \mathrm{z}=7 x_{1}+9 x_{2}$, subject to $-x_{1}+3 x_{2} \leq 6$,
17. Use modified simplex method to solve the complete goal programming formulation is again reproduced as :

Minimize $\mathrm{z}=p_{1} d_{1}^{-}+2 p_{2} d_{2}^{-}+p_{2} d_{3}^{-}+p_{3} d_{1}^{-}$,
Subject to : $x_{1}+x_{2}+d_{1}^{-}-d_{1}^{+}=400 ; x_{1}+d_{2}^{-}=240 ; x_{2}+d_{3}^{-}=300$, and $x_{1}, x_{2}, d_{1}^{-}, d_{1}^{+}, d_{2}^{-}, d_{3}^{-} \geq 0$
18. Table below shows, jobs, their normal time and cost, and crash time and cost for a project.

| JOB | Normal Time <br> (days) | Cost (Rs.) | Cost Time <br> (days) | Crash Cost <br> (days) |
| :---: | :---: | :---: | :---: | :---: |
| $1-2$ | 6 | 1400 | 4 | 1900 |
| $1-3$ | 8 | 2000 | 5 | 2800 |
| $2-3$ | 4 | 1100 | 2 | 1500 |
| $2-4$ | 3 | 800 | 2 | 1400 |
| $3-4$ | Dummy | --- | --- | --- |
| $3-5$ | 6 | 900 | 3 | 1600 |
| $4-6$ | 10 | 2500 | 6 | 3500 |
| $5-6$ | 3 | 500 | 2 | 800 |

Indirect cost for the project is Rs. 300 per day
(i) Draw the network of the project
(ii) What is the normal duration cost of the project?
(iii)If all activities are crashed, what will be the project duration and corresponding cost?
(iv) Find the optimum duration and minimum project cost.
19. A farmer is attempting to decide which of three crops he should plant on his onehundred acre farm. The profit from each crop is strongly dependent on the rainfall during the growing season. He organized the amount of rainfall as substantial, moderate or light. He estimate his profit for each crop as shown the table:

| Rainfall | Estimated profit (Rs) |  |  |
| :---: | :---: | :---: | :---: |
|  | Crop A | Crop B | Crop C |
| Substantial | 7000 | 2500 | 4000 |
| Moderate | 3500 | 3500 | 4000 |
| Light | 1000 | 4000 | 3000 |

Depending on the weather in previous seasons and the current projection for the coming season, he estimates the probability of substantial rainfall as 0.2 that of moderate rainfall as 0.3 and that of light rainfall 0.5 . Furthermore, services of forecasters could be employed to provide a detailed survey of current rainfall prospects as given in the table below:

Rainfall prediction

| Actual <br> rainfall | Substantial | Moderate | Light |
| :--- | :---: | :---: | :---: |
| Substantial | 0.70 | 0.25 | 0.05 |
| Moderate | 0.30 | 0.60 | 0.10 |
| Light | 0.10 | 0.20 | 0.70 |

a) From the available data, determine the optimal decision as to which crop to plant.
b) Determine whether it would be economical for hire the services of a forecaster.
20. Apply Beale's method for solving the quadratic programming problem:

$$
\begin{array}{ll}
\operatorname{Max} z_{x}=10 x_{1}+25 x_{2}-10 x_{1}^{2}-4 x_{1} x_{2}-x_{2}^{2}, \text { subject to } & \\
x_{1}+2 x_{2}+x_{3}=10, x_{1}+x_{2}+x_{4}=9, \text { and } x_{1}, x_{2}, x_{3}, x_{4} \geq 0 . & +
\end{array}
$$

|  |
| :---: |

G.T.N. ARTS COLLEGE (Autonomous)

DINDIGUL-624005
(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., MATHEMATICS
Course Code: 20PMAC25
Course Title: Calculus of Variations

Date: 08.02.2022
Time: 2 pm - $\mathbf{5}$ pm
Max. Marks: 60

Qn.
No.
Section - A
[ $10 \times 1=10]$

## Answer ALL the Questions

1. The extremal of the functional $\int_{a}^{b}\left(12 x y+y^{\prime 2}\right) d x$ is $\qquad$ .
a) $y(x)=x^{3}$
b) $y(x)=x^{3}-c_{1} x-c_{2}$
c) $y(x)=x^{3}+c_{1} x+c_{2}$
d) $y(x)=0$
2. The extremal of the following functional $\int_{a}^{b} y^{2} d x$ is $\qquad$ .
a) $y(x)=0$
b) $y(x)=1$
c) $y(x)=2$
d) $y(x)=3$
3. Which is the extremal of the following functional
$I[z(x, y)]=\int_{D}\left[\left(p^{2}+q^{2}\right)+2 z f(x, y)\right] d x d y ?$
a) Poisson equation
b) Euler equation
c) Isopermetric
d) Cauchy equation
4. 

The value of the extremal for the functional $\int_{0}^{\frac{\pi}{2}}\left(2 x y+x^{\prime 2}+y^{\prime 2}\right) d x$ with the boundary condition
$x(0)=0, x(\pi / 2)=1$ and $y(0)=0, y(\pi / 2)=1$ is $\qquad$ .
a) $x=-\sin t, y=\sin t$
b) $x=\operatorname{cost}, y=-\cos t$
c) $x=\sin t, y=-\sin t$
d) $x=\sin y, y=\cos t$
5. The extremals of the functional $I(y)=\int_{0}^{\frac{\pi}{2}}\left(y^{\prime \prime 2}-y^{2}+x^{2}\right) d x$ is
$\qquad$ .
a) one parameter family of curves
b) two parameter family of curves
c) three parameter family of curves
d) four parameter family of curves.
6. The extremal for $I(y)=\int_{0}^{\log 3}\left(e^{-x} y^{\prime 2}+2 e^{x}\left(y^{\prime}+y\right) d x\right.$ where CO3 K2 $y(\log 3)=1$ and $y(0)$ is free is $\qquad$ .
a) $4-e^{x}$
b) $10-e^{x}$
c) $2-e^{x}$
d) $8-e^{x}$
7. Test for an extremum of the functional $I[y(x)]=\int_{0}^{1} e^{2}\left(y^{2}+\frac{y^{\prime 2}}{2}\right) d x$ is
$\qquad$ .
a) Strong maxima
b) Strong minima
c) Weak maxima but not a strong maxima
d) Weak minima but not a strong minima
8. Examine the function $f(x, y)=3 x^{2}+6 x y+7 y^{2}-2 x+4 y$ then $\qquad$ . CO4 K2
a) $(13 / 12,-3 / 4)$ is a critical point
b) Local minimum at $(-13 / 12,-3 / 4)$
c) Local maximum at $(-13 / 12,-3 / 4)$
d) $(12,14)$ strong maxima
9. The boundary value problem $y^{\prime \prime}-y+x=0,(0 \leq x \geq 1)$ is $\qquad$ .

CO5
a) $y(x)=c_{0}+c_{1} x+c_{2} x^{2}$
b) $y(x)=c_{0}+c_{1} x^{2}+c_{2} x$
c) $y(x)=c_{0}+c_{1} x+c_{2} x^{3}$
d) $y(x)=c_{0}+c_{1} x$
10. The boundary value problem $y^{n}=1, y(0)=0, y(1)=0$ by Rayleigh-Ritz CO5 K2 method is $\qquad$ .
a) $y(x)=c\left(x-x^{2}\right)$
b) $y(x)=c\left(x^{2}-x\right)$
c) $y(x)=c\left(x+x^{2}\right)$
d) $y(x)=0$

Qn.
No.
Section-B
$[5 \times 4=20] \quad \mathrm{CO}(\mathrm{s})$
K -
Level

## Answer ALL the Questions

11.a) Explain the extremal of the functional $I(y)=\int_{0}^{e}\left(x y^{\prime 2}+y y^{\prime}\right) d x$ subject to the condition $y(1)=0, y(e)=1$.
[OR]
b) Explain the extremal $I[y(x)]=\int_{a}^{b}\left(y^{\prime \prime 2}-2 y^{\prime 2}+y^{2}-2 y \sin x\right) d x$. CO1 K2
12.a) Show that the extremal of the isopermetric problem $I[y(x)]=\int_{1}^{4} y^{\prime 2} d x$ CO 2 K2 with $y(1)=3, y(4)=24$ to condition $\int_{1}^{4} y d x=36$ is a parabola.
[OR]
b) Explain the extremal of the functional $I=\frac{1}{2} \int_{0}^{1} y^{\prime \prime 2} d x$ such that CO 2

K2
$y(0)=0, y(1)=1 / 2, y^{\prime}(0)=0, y^{\prime}(1)=1$.
13.a) Solve the shortest distance from the point $A(-1,3)$ and the straight line CO3 K3 $y=1-3 x$.

> [OR]
b) Solve the shortest distance between the point $(0,1)$ and $y=x^{2}$.

CO 3
K3
14.a) Solve the extremum of the functional $I(y)=\int_{0}^{1} e^{x}\left(y^{2}+\frac{y^{\prime z}}{2}\right) d x$.
[OR]
b) Explain the proper and central field of extremals for the function

$$
I=\int_{0}^{\frac{\pi}{4}}\left(y^{\prime 2}-y^{2}+2 x^{2}+4\right) d x
$$

15.a) Explain the least eigen value of $y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y(1)=0$.

CO5

## [OR]

b) Identity the Poisson equation $u_{x x}+u_{y y}=-1$ on a square defined by $|x| \leq 1,|y| \leq 1$ and $u=0$ when $x= \pm 1, y= \pm 1$.

Qn.
Section-C
$[3 \times 10=30]$
$\mathrm{CO}(\mathrm{s})$
K -
Level
No.

## Answer ANY THREE Questions

16. Construct the path on which a particle in the absence of friction will slide from one point to another in the shortest time under the action of gravity.
17. Solve the extremal of the functional $I[y(x)]=\int_{0}^{\frac{\pi}{2}}\left[y^{n 2}-y^{2}+x^{2}\right] d x$

CO 2 K 3
with the condition $y(0)=1, y^{\prime}(0)=0$ and $y\left(\frac{\pi}{2}\right)=0, y^{\prime}\left(\frac{\pi}{2}\right)=-1$.
18. Summarize the minimum distance between circle $x^{2}+y^{2}=1$ and straight CO3 line $x+y=4$.
19. Test for an extremum the functional
$I[y(x)]=\int_{0}^{1}\left(x+2 y+\frac{y^{\prime 2}}{2}\right) d x$, with the condition $y(0)=y(1)=0$.
20. Show that the extremal of the variational problem CO5 K3
$\int_{0}^{2}\left(\mathrm{y}^{\prime 3}+\sin ^{2} x\right) \mathrm{dx}$ with the condition $y(0)=0, y(2)=6$ is included in a central field of extremals of the given functional.
$\square$

## G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) || (Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2020
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc. Mathematics
Course Code: 20PMAC31
Course Title : Linear Algebra - I

Date: 03.02.2022
Time: 10 am. to 1 pm .
Max. Marks: 60

Section - A

## Answer ALL the Questions

1. Which of the following is a subspace of $R^{3}$ ?
[a] all vectors of the form ( $\mathbf{0}, \boldsymbol{a}, \mathbf{0}$ ) where $\boldsymbol{a} \in \boldsymbol{R}$
[b] all vectors of the form $(a, 1,1)$ where $a \in R$
[c] all vectors of the form $(a, b, c)$ where $a+b+c=1$
[d] all vectors of the form $(2, a, 1)$ where $a \in R$
2. Which one of the following is not a vector space over $C$ ?
[20 x $1=20$ ]
CO(s) K - Level
CO1
K1
[a] R
[b] $R-\{0\}$
[c] $Z$
[d] $N$
3. What is the dimension of $C(R)$ ?
[a] 1
[b] 2
[c] 3
[d] 4
4. The number of elements in any two bases of a finite dimensional vector space is $\qquad$
[a] same
[b] different
[c] infinite
[d] Finite
5. Let $V$ and $W$ be vector spaces over the field $F$ and $T$ be a linear transformation from $V$ into $W$ and $V$ is a finite-dimensional then which of the following is true?
[a] Rank (T) + nullity (T) $\leq \operatorname{dim} V$
[b] $\operatorname{rank}(T)=\operatorname{dim} V+1$
[c] dim V $=\operatorname{rank}(\mathrm{T})+\operatorname{nullity}(\mathrm{T})$
[d] $\operatorname{dim} \mathrm{V}=0$ only
6. A linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(1,2)=(2,3)$ and $T(0,1)=(1,4)$ then which of the following is true?
[a] $\boldsymbol{T}(x, y)=(y,-5 x+4 y)$
[b] $T(x, y)=\left(2 x, \frac{3}{2} y\right)$
[c] $T(x, y)=(x+1,5 x+4 y)$
[d] $T(x, y)=(|x|, y)$
7. 

If $\mathrm{A}=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Then $\operatorname{rank}(A-2 I)$ is $\qquad$ .
[a] 0
[b] -1
[c] 1
[d] none.
8. If V is a finite dimensional vector space and W is a subspace of V , then the CO 4 K2 invariance of W under T has a $\qquad$ interpolation.
[a] matrix
[b] zero polynomial
[c] polynomial
[d] Hermitian matrix
9. Let $u$ and $v$ be eigen vectors of $T$ corresponding to two distinct eigen values CO5 of $T$. Which of the following is true?
[a] $u+v$ can be an eigen value of $T$
[b] $\boldsymbol{u}+\boldsymbol{v}$ cannot be an eigen value of $\boldsymbol{T}$
[c] $u-v$ can be an eigen value of $T$
[d] $\{u, v\}$ is not a linearly independent set.
10. If $T$ is diagonalizable and has a cyclic vector then $T$ has $\qquad$ .
[a] $n-1$ distinct eigen values
[b] $\boldsymbol{n}$ distinct eigen values
[c] $n+1$ distinct eigen values
[d] $n^{2}$ eigen values

## Section-B

[5 x $6=30$ ]
K - Level

## Answer ALL the Questions

11.a) Let $W$ and $U$ be subspaces of $V(F)$ such that $W \subset U \subset V$ and let $f: V \rightarrow \frac{V}{W}$ CO1 be the quotient map. Show that $f(U)$ is a proper subspace of $\frac{V}{W}$.
[OR]
11.b) If $L, M, N$ are three subspaces of a vector space $V$, such that $M \subseteq L$ then show

CO1
that $L \cap(M+N)=(L \cap M)+(L \cap N)=M+(L \cap N)$.
12.a) Let $V$ be a finite dimensional vector space and suppose $S$ and $T$ are two finite $\quad$ CO2 subsets of $V$ such that $S$ spans $V$ and $T$ is linearly independent. Prove that $O(T) \leq O(S)$.
[OR]
12.b) Let $A$ be $n \times n$ symmetric matrix and suppose that $R^{n}$ has the standard inner CO2 product. Prove that if $(u, u A)=(u, u)$ for all $u$ in $R^{n}$, then $A=I$.
13.a) Let $T$ be a linear operator on finite dimensional vector space $V$. Suppose there

CO3 is a linear operator $U_{\text {on }} V$ such that $T U=I$. Show that $T$ is invertible and $T^{-1}=U$.
[OR]
13.b) Let $T$ be linear operator on $R^{3}$, the matrix of which in the standard ordered
basis is $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4\end{array}\right]$. Find a basis for the range of $T$ and a basis for null space of $T$.
14.a) Let $T$ be a linear operator on an $n$-dimensional space $V$. Prove that the characteristic and minimal polynomials for $T$ have the same roots
[OR]
14.b) Prove that the minimal polynomial of a linear operator $T$ divides its CO4

K3 characteristics polynomial.
15.a) If $T$ is an idempotent linear operator, then show that $\mathbf{0}$ or $\mathbf{1}$ are only eigen CO 5 K2 values of $T$ and $T$ is diagonalizable.
[OR]
15.b) Let $T$ be a linear operator on a finite dimensional vector space $V$. Let $f(x)$ be CO5 K2 the characteristic polynomial for $T$. Then $f(T)=0$.

> Section - C
$[5 \times 10=50] \quad \operatorname{CO}(s)$
K - Level

## Answer ALL the Questions

16. If $S_{1}$ and $S_{2}$ are subsets of $V$, then prove that
i) $S_{1} \subseteq S_{2} \Rightarrow L\left(S_{1}\right) \subseteq L\left(S_{2}\right)$
ii) $L\left(S_{1} \cup S_{2}\right)=L\left(S_{1}\right)+L\left(S_{2}\right)$
iii) $L\left(L\left(S_{1}\right)\right)=L\left(S_{1}\right)$.
17. State and prove Gram- Schmidt Orthogonalisation process.
18. Let $T: V \rightarrow W$ and $S: W \rightarrow U$ be two linear transformations. Prove that

CO 3
(i) If $S$ and $T$ are one-one onto then $S T$ is one-one onto and $(S T)^{-1}$.
(ii) If $S T$ is one-one then $T$ is one-one.
(iii) If $S T$ is onto then $S$ is o
19. Obtain the eigen values, eigen vectors and eigen spaces of

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

[OR]
20. Let $T$ be a linear operator on a finite dimensional vector space $V(F)$.Suppose CO5 that the minimal polynomial for $T$ decompose over $F$ into a product of linear polynomials. Prove that there exists a diagonalizable operator $D$ on $V$ and a nilpotent operator $N$ on $V$ such that
i) $T=D+N$
ii) $D N=N D$. Further $D$ and $N$ are uniquely determined such that $T=D+N$ and $D N=N D$.

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

G.T.N. ARTS COLLEGE (autonomous)
(Affiliated to Madurai Kamaraj University)\|(Accredited by NAAC with ‘B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc
Course Code: 20PMAC32
Course Title : Measure Theory

Date: 04.02.2022
Time: 10 am To 1 pm
Max. Marks: 60

Qn.
No.

1. What is the necessary condition satisfied for $m^{*}(A) \leq m^{*}(B)$ ?

K $\mathrm{CO}(\mathrm{s})$
[a] $A \supseteq B$
$[\mathrm{b}] A \subseteq B$
[c] $A \subset B$
[d] $A \supset B$
2. Which of the following property is not satisfied by the outer measure?
[a] translation invariant
[b] countable additivity
[c] monotonicity
[d] countable subadditivity
3. Which of the following ismeasurable?
[a] monotone function
[b] constant function
[c] continuous function
[d] all the above
4. The alternative form of Ess $\sup f$ is $\qquad$ .
[a] -ess $\inf (-f)$
[b] ess inf(-f)
[c] -esssup (-f)
[d] $\operatorname{esssup}(-f)$
5. Choose the correct statement if f and g be non-negative measurable function.
[a] $\int f d x+\int g d x \neq \int(f+g) d x$
[b] $\int f d x+\int g d x=\int(f \mp g) d x$
[c] $\int f d x+\int g d x \leq \int(f+g) d x$
[d] $\int f d x+\int g d x \geq \int(f-g) d x$
6. Choose the correct one for any measurable set $E$ and any non-negative measurable function $f$ is said to be the integral of $f$ over $E$.
$[\mathrm{a}] \int_{E} f d x=\int_{E} f \chi_{E} d x$
$[\mathrm{b}] \int_{E} f d x=\int_{E} \emptyset d x$
$[\mathrm{c}] \int_{E} f d x=\sup \int_{E} \varnothing d x$
$[\mathrm{d}] \int_{E} f d x=-\int_{E} f \chi_{E} d x$
7. Let $a=\xi_{0}<\xi_{1}<\cdots<\xi_{n}=b$ be a partition $D$ of $[\mathrm{a}, \mathrm{b}]$ then $s_{D}$ is $\qquad$ .
[a] $\sum_{i=1}^{n} M_{i}\left(\xi_{i}-\xi_{i-1}\right)$
[b] $\sum_{i=1}^{n} m_{i}\left(\xi_{i}-\xi_{i-1}\right)$
[c] $\sum_{i=1}^{n} M_{i}\left(\xi_{i-1}-\xi_{i}\right)$
[d] $\sum_{i=1}^{n} m_{i}\left(\xi_{i-1}-\xi_{i}\right)$
8.

$$
\text { If } f(x)=\left\{\begin{array}{cl}
|x| & \mathrm{x} \in \mathrm{Q} \\
2|x| & \mathrm{x} \notin \mathrm{Q}
\end{array}\right.
$$

CO4
K2 then the value of $D^{-} f(0)$ is $\qquad$ .
[a] 2
[b] 1
[c] -1
[d] -2
9. If a ring is closed under the formation of countable unions then it is called CO5
$\qquad$ -.
[a] $\sigma$-ring
[b] $\sigma$-algebra
[c] $\sigma$-field
[d] $\sigma$-semi ring
10. A measure $\mu$ on $\mathcal{R}$ is complete, if

CO5
$[\mathrm{a}] E \in \Re$
$[\mathrm{b}] F \subseteq E$
[c] $\mu(\mathrm{E})=0$
[d] all the above

Qn.

## Section - B

[ $5 \times 4=20$ ]

## Answer ALL the Questions

11.a) Show that for any set $A$ and any $\epsilon>0$, thereis an open set $O$ containing $A$ and such that $m^{*}(O) \leq m^{*}(A)+\epsilon$.
[OR]
b) Let $\mathcal{A}$ be a class of subsets of a space $X$, there exists a smallest $\sigma$-algebra $\mathcal{S}$ CO1 containing $\mathcal{A}$ then prove that $\delta$ is a $\sigma$-algebra generated by $\mathcal{A}$.
12.a) Prove that continuous functions are measurable.

CO 2
[OR]
b) Prove that the set of points on which a sequence of measurable functions $\left\{f_{n}\right\} \quad \mathrm{CO} 2$ converges, is measurable.
13.a) Show that $\int_{1}^{\infty} \frac{d x}{x}=\infty$ CO 3

## [OR]

b) Show that if $f$ is integrable, then $f$ is finite-valued almost everywhere.
14.a) Show that $f \in L(a+h, b+h)$ and $f_{h}(x) \equiv f(x+h)$ then $f_{h} \in L(a, b)$ and CO4 K3 $\int_{a+h}^{b+h} f d x=\int_{a}^{b} f_{h} d x$.
[OR]
b) Iff $(x)=x \sin \left(\frac{1}{x}\right)$ for $x \neq 0, f(0)=0$, find the four derivates at $x=0 . \quad$ CO4
15.a) Let $\mu^{*}$ be the outer measure on $\mathcal{H}(\mathcal{R})$ defined by $\mu$ on $\mathcal{R}$, then prove that $S^{*}$ CO5 contains $S(\mathcal{R})$ is the $\sigma-$ ring generated by $\mathcal{R}$.
[OR]
b) Prove that the limit of a point wise convergent sequence of measurable

CO5 functions is measurable.

Qn.

> Section - C
$[3 \times 10=30]$
CO(s)
K -
No.

## Answer ANY THREE Questions

16. Let $\left\{E_{i}\right\}$ be a sequence of measurable sets. Prove that CO1
(i) if $E_{1} \subseteq E_{2} \subseteq \cdots$, then $m\left(\lim E_{i}\right)=\lim m\left(E_{i}\right)$.
(ii)if $E_{1} \supseteq E_{2} \supseteq \cdots$, and $m\left(E_{i}\right)<\infty$ for each $i$, then $m\left(\lim E_{i}\right)=$ $\lim m\left(E_{i}\right)$.
17. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions defined on the same CO 2 measurable set. Then prove that
(i) $\sup _{1 \leq i \leq n} f_{i}$ is measurable for each n ,
(ii) $\quad \inf _{1 \leq i \leq n} f_{i}$ is measurable for each n ,
(iii) $\operatorname{Sup} f_{n}$ is measurable,
(iv) $\inf f_{n}$ is measurable,
(v) $\lim \operatorname{Sup} f_{n}$ is measurable,
(vi) $\quad \lim \inf f_{n}$ is measurable.
18. State and prove that Lebesgue's dominated convergence theorem for series. CO 3
19. Let $f$ be bounded and measurable on a finite interval $[\mathrm{a}, \mathrm{b}]$ and let $\in>0$ then CO 4 prove that there exist
(i) a step function $h$ such that $\int_{a}^{b}|f-h| d x<\epsilon$,
(ii) a continuous function $g$ such that $g$ vanishes outside a finite interval and $\int_{a}^{b}|f-g| d x<\in$.
20. Let $\left\{A_{i}\right\}$ be any sequence in a ring $\mathcal{R}$, then prove that there is a sequence $\left\{B_{i}\right\} \quad \operatorname{CO} 5$ of disjoint sets of $\mathcal{R}$ such that $B_{i} \subseteq A_{i}$ for each $i$ and $\mathrm{U}_{i=1}^{N} A_{i}=\mathrm{U}_{i=1}^{N} B_{i}$ for each N , so that $\cup_{i=1}^{\infty} A_{i}=\mathrm{U}_{i=1}^{\infty} B_{i}$.

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

G.T.N. ARTS COLLEGE (AUTONOMOUS)
(Affiliated to Madurai Kamaraj University)\|(Accredited by NAAC with ‘B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., MATHEMATICS
Course Code: 20PMAC33
Course Title: Topology

Date : 05.02.2022
Time : 10 am To 1 pm
Max. Marks : 60

Qn.
No.
1.
. Let $X$ be any set, the collection of all subsets of $X$ is called $\qquad$ .
[a] Indiscrete topology
[b] Discrete topology
[c] Trivial topology
[d] Ring topology
2. Which of the following is true, if the topological space consists of the set of

CO1 real number?
[a] Co-finite topology
[b] Co-countable topology
[c] Co-complement topology
[d] Usual topology
3. What is the $\operatorname{int}(A) \mathrm{if}=\{a, b, c, d, e\}$
, $\mathfrak{J}=\{X, \emptyset,\{b\},\{a, d\},\{a, b, d\},\{a, c, d, e\}\}$ and $A=\{a, b, c\}$ ?
[a] $\{a\}$
[b] $\{b\}$
[c] $\{c\}$
[d] $\{d\}$
4. What is $A^{o}$ if $A \subseteq X$ in a topological space $(X, \mathfrak{J})$ ?
[a] $A^{o}$ is closed
[b] $A^{o}$ is $\emptyset$
[c] $A^{o}$ is $X$
[d] $A^{0}$ is open
5. Let $(R, U)$ be usual topological space and $A, B \subseteq R$ where $A=(2,3)$ and $B=(4,5)$ then $\qquad$ _.
[a] $A$ and $B$ are separated
[b] $A$ and $B$ may be separated
[c] $A$ and $B$ are separated
[d] can't say
6. Let $\left(X, \Im_{1}\right)$ and $\left(Y, \Im_{2}\right)$ be two topological spaces then a function $f: X \rightarrow Y \quad \mathrm{CO} 3 \quad \mathrm{~K} 2$ is said to be bicontinuous if $f$ is $\qquad$ .
[a] Open
[b] Continuous
[c] Both a \& b
[d] Neither a nor b
7. Which of the following condition for cover of a subset ?
[a] $A \in\left\{G_{\alpha}: \alpha \in \Lambda\right\}$
$[\mathrm{b}] A \in \cup\left\{G_{\alpha}: \alpha \in \Lambda\right\}$
$[\mathrm{c}] A \notin \cup\left\{G_{\alpha}: \alpha \in \Lambda\right\}$
[d] Both $a$ and $b$
8. Which of the following is true?

CO4
[a] A subset of a compact Hausdorff space is not compact iff it is closed
[b] A subset of a compact Hausdorff space is compact iff it is open
[c] A subset of a compact Hausdorff space is compact iff it is closed
[d] A subset of a compact Hausdorff space is compact iff it is closed and open
9. Assertion (A): A topological space is $T_{1}$ space.

Reason ( R ) : Every singleton subset $\{x\}$ of $X$ is a $\mathfrak{J}$-closed set
[a] Both A \& R are true
[b] A is true, $R$ is false
[c] A is false, R is true
[d] Both A \& R are false
10. Which one of the following is true?
[a] Every second countable is separable.
[b] Every subspace of a $T_{o}$ space is $T_{o}$ space
[c] Every subspace of $T_{2}$ space is $T_{2}$ space
[d] All the above

Qn.
No.

## Section - B

[5 x $4=20$ ]
No.
Answer ALL the Questions
K Level CO1 $X=\{a, b, c, d\}$ and find all $\mathfrak{I}$-closed subsets of $X$.
12.a) Prove that every discrete topological space is Hausdorff.
[OR]
b) If $(X, \mathfrak{J})$ be a topological space and $A$ be a subset of $X$ then prove that $\bar{A}=A \cup D(A)$.
13.a) Let $\left(X, \Im_{1}\right)$ and $\left(Y, \Im_{2}\right)$ be two topological spaces then prove that a function CO3 $f: X \rightarrow Y$ is $\Im_{1}-\mathfrak{J}_{2}$ continuous or simply continuous iff the inverse image under $f$ at every member of base $B$ for $\widetilde{J}_{2}$ is a $\widetilde{J}_{1}$ - open subset of $X$.
b) Prove that in a topological $\operatorname{space}(X, \mathfrak{J})$, the subsets $C$ and $D$ of separated sets $A$ and $B$ respectivelyare also separated.
14.a) Show that co-finite topological space is compact.
[OR]
b) Let $(X, \mathfrak{J})$ be compact space and $f$ be a $\mathfrak{J}$-continuous mapping of $X$ into $R$, CO4 then prove that $f$ is bounded.
15.a) Show that every compact topological space is Lindelof but every Lindelof space is not necessarily compact.
[OR]
b) Show that every subspace of a $T_{o}$-space is a $T_{o}$-space.

Qn.
Section-C
$[3 \times 10=30]$
No.

## Answer ANY THREE Questions

16. Let $X$ be a non-empty set and $C$ be a collection of subsets of $X$. Then prove that there exists a family $\mathfrak{J}$ consisting of the members of $C$ such $\mathfrak{J}$ is a topology for $X$ and $\mathfrak{J}$-closed subsets of $X$ are members of $C$.
17. Let $X$ be a non-empty set and for each $x \in X$. Let $N_{x}$ be a non-empty collection of subsets of $X$ satisfying the following conditions.
(a) $N \in N_{x} \Rightarrow x \in N$
(b) $N \in N_{x}, M \in N_{x} \Rightarrow N \cap M \in N_{x}$

Let $\mathfrak{J}$-consists of the empty set and also the non-empty subsets $A$ of $X$ having the property that $x \in A$ implies that there exists an $N \subset N_{x}$ such that $x \in N \subset A$ then prove that $\mathfrak{J}$ is a topology.
18. Let $A$ and $B$ be two non-empty disjoint subsets of $X$ and let $E=A \cup B$, then prove that
(a) $A$ and $B$ are separated $\Leftrightarrow$ each of $A$ and $B$ are closed in $E$
(b) $A$ and $B$ are separated $\Leftrightarrow$ each of $A$ and $B$ are open in $E$
(c) $A$ and $B$ are separated $\Leftrightarrow A$ and $B$ are both open and closed in $E$.
19. Prove that a topological space $(X, \mathfrak{J})$ is compact iff every basic open cover CO 4 K3 of $X$ has a finite subcover.
20. Let $B$ be any subset of a second countable space $X$. If $C$ is an open cover of CO5 $A$ then prove that $C$ is reducible to a countable subcover.

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

G.T.N. ARTS COLLEGE (autonomous)
(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., MATHEMATICS
Course Code: 20PMAE31
Course Title: Graph Theory

Date: 07.02.2022
Time: 10 am To 1 pm
Max. Marks 60

Qn.
Section-A
[ $10 \times 1=10]$
No.

## Answer ALL the Questions

1. A connected graph $G$ is Eulerian if $\qquad$ .
a) Has no vertices of odd degree
b) All vertices of odd degree
c) Has no vertices of even degree
d) All vertices of odd degree
2. How many of the following statements are correct?
i) All cyclic graphs are complete graphs.
ii) All complete graphs are cyclic graphs.
iii) All paths are bipartite.
iv)All cyclic graphs are bipartite.
v) There are cyclic graphs which are complete.
a) 1
b) 2
c) 3
d) 4
3. What is the value of $\lambda(G)$ for a disconnected graph $G$ ?
a) 0
b) 1
c) 2
d) None of these
4. In a 2-connected graph $G$, any two longest cycles have at least $\qquad$ CO 2K2 vertices in common.
a) 0
b) 1
c) 2
d) 3
5. If $M$ is a matching in $G$ such that every vertex of $G, M$-saturated then $M$ is $\quad \mathrm{CO} 31$ called $\qquad$ matching.
a) Perfect
b) Proper
c) Maximal
d) Minimal
6. Every stable matching is a $\qquad$ matching in G.
a) Maximal
b) Maximum
c) Minimal
d) Minimum
7. The chromatic number of connected bipartite graph is $\qquad$ .
a) 1
b) 2
c) 3
d) $\geq 4$
8. A graph $G$ is critical if $\qquad$ for every proper sub-graph $H$ of $G$.
a) $\boldsymbol{\chi}(\boldsymbol{H})<\boldsymbol{\chi}(\boldsymbol{G})$
b) $\chi(H)>\chi(G)$
c) $\chi(H)=\chi(G)$
d) $\chi(G)=k$
9. $\quad K_{n}$ is planar if and only if $\qquad$ CO5
a) $\boldsymbol{n} \leq \mathbf{4}$
b) $n \geq 4$
c) $n=4$
d) $n \neq 5$
10. The Peterson graph is $\qquad$ CO 5
a) Planar
b) Non-planar
c) Disconnected
d) 2-regular

Qn.
Section-B
[5 x $4=20]$

## No.

## Answer ALL the Questions

11.a) Prove that the sum of degrees of a graph is twice the number of edges in it.
[OR]
b) Define path, walk and trail with suitable examples.

CO1
12.a) Show that every non-trivial loop-less connected graph has at least two CO2 vertices that are not cut vertices.
[OR]
b) Show that if $G$ is simple and 3-regular, then prove that $k(G)=k^{\prime}(G)$.
13.a) Explain Hamiltonian path and Hamiltonian cycle with examples.

CO3
[OR]
b) If $G$ is a non Hamiltonian simple graph with $v \geq 3$, then prove that $G$ is CO3 K2 degree-majorised by some $C_{m, v}$.
14.a) If $G$ is bipartite, then prove that $\chi^{\prime}=\Delta$.
b) Let $G$ be a $k$ - critical graph with a 2 -vertex cut $\{u, v\}$. Then prove that CO4 $G=G_{1} \cup G_{2}$, where $G_{i}$ is a $\{u, v\}$-component of type $i(i=1,2)$.
15.a) Prove that $K_{5}$ is non-planer.
[OR]
b) If $G$ is a plane graph, then prove that

CO5

$$
\sum_{f \in F} d(f)=2 \varepsilon
$$

Qn.

## Section-C

$[3 \times 10=30]$
No.

## Answer ANY THREE Questions

16. Write down union and disjoint of two graphs with suitable example.
17. Prove that an edge $e$ of $G$ is a cut edge of $G$ if and only if $e$ is contained in no cycle of $G$.
18. Show that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
19. Let $G$ be a $k$-critical graph with a 2 -vertex $\operatorname{cut}\{u, v\}$. Then prove that CO4

K $\mathrm{CO}(\mathrm{s}) \underset{\text { Level }}{\mathrm{K}-}$ CO1 CO 2 K3 K4 CO3 K3 $d(u)+d(v) \geq 3 k-5$.
20. i) Show that the Petersen graph is non-planar.

CO 5
K4
ii) If $G$ is a simple planar graph, then $\delta \leq 5$.

G.T.N. ARTS COLLEGE (autonomous)
(Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade)
END SEMESTER EXAMINATION - NOVEMBER 2021
(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme: M.Sc., MATHEMATICS
Course Code: 20PMAE32
Course Title: Number Theory

Date: 07.02.2022
Time: 10 am To 1 pm
Max. Marks 60

Qn.
Section-A
[ $10 \times 1=10]$
No.

## Answer ALL the Questions

1. Which one of the following is true if G.C.D $(a, b)=d$ ?
a) $d$ can be written in the linear combination of $a$ and $b$ such that $a x+$ $b y=d$
b) $a+b=d$
c) $d$ can be written in the linear combination of $a$ and $b$ such that $a x-$ $b y=d$
d) All of the above
2. If $n$ is a positive integer such that sum of all positive integer $a$ satisfying $(a, n)=1,1 \leq a \leq n$ is equal to $240 n$, then the number of summands
$\qquad$ .
a) 120
b) 240
c) 480
d) 124
3. Which relation is satisfied for congruence on $Z$ ?

CO2
a) Partial order relation
b) Equivalence relation
c) Anti symmetric relation
d) Anti reflexive relation
4. Which of the following is true?
a) if $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$
b) if $n a \equiv n b(\bmod m)$ and $(m, n)=d$ then $a \equiv b(\bmod m \mid d)$
c) if $n a \equiv n b(\bmod m)$ and $(m, n)=1$ then $a \equiv b(\bmod m)$
d) all of these
5. What is the quadratic residues modulo 5 ?
a) 1 and 4
b) 1 and 5
c) 2 and 3
d) 1 and 3
6. What is the value of $\left(\frac{a}{p}\right)$ if $a=-1$ and $p=11$ ?
a) 1
b) -1
c) 32
d) -32
7. Find the value of $[-3.4]$ ?

CO4
a) 3
b) 4
c) -3
d) -4
8. Find the value of $\sum_{n=1}^{\infty} \mu(n!)$ ?

CO4
a) 1
b) 0
c) -1
d) $\infty$
9. The linear Diophantine equation $7 x-8 y=5$ has $\qquad$ .

CO5
K1
a) Exactly one integer solution.
b) Exactly two integer solution.
c) Infinitely many integer solutions and the difference between any two values of $x$ in the solutions is divisible by 8
d) Infinitely many integer solutions and the difference between any two values of $x$ in the solutions is divisible by 7
10. The Diophantine equation $6 x+8 y+12 z=10$ is $\qquad$ .

CO5 K2
a) Solvable
b) Un solvable
c) $a$ or $b$
d) Both a \& b

Qn.

## Section - B

$[5 \times 4=20]$

## Answer ALL the Questions

11.a) Prove that $\operatorname{if}(a, m)=(b, m)=1$, then $(a b, m)=1$.
[OR]
b) Prove that every integer $n$ greater than 1 can be expressed as a product of primes.
12.a) If $b \equiv c(\bmod m)$, then prove that $(b, m)=(c, m)$.
[OR]
b) State and prove Wilson's theorem.

CO 2
13.a) If $p$ denote an odd prime. Prove that if $(a, p)=1$ then CO3

## K2

 $\left(\frac{a^{2} b}{p}\right)=\left(\frac{b}{p}\right)$.[OR]
b) Estimate all primes $p$ such that $\left(\frac{10}{13}\right)=1$ by using Legendre Symbol.
14.a) Let $x$ and $y$ be real numbers then prove that

CO4
(i) $[x+m]=[x]+m$, if $m$ is an integer.
(ii) $[x]+[y] \leq[x+y] \leq[x]+[y]+1$.
[OR]
b) Let $x$ and $y$ be real numbers then prove that
(i) if two integers are equally nearer to $x$, it is the smaller of the two.
(ii) if $n$ and $a$ are positive integers, $[n / a]$ is the number of integers among $1,2,3, \ldots, \mathrm{n}$ that are divisible by $a$.
15.a) Find all solutions in integers of $2 x+3 y+4 z=5$ by using Diophantine
CO5 K3 equation.
[OR]
b) Find all solutions in integers of $6 x+8 y+12 z=10$ by using Diophantine CO5 K3 equation.

| Qn. <br> No. | Section - C $[3 \times 10=30]$ <br> Answer ANY THREE Questions | $\mathrm{CO}(\mathrm{s})$ | K - <br> Level |
| :---: | :---: | :---: | :---: |
| 16. | State and prove the Unique factorization theorem. | CO1 | K3 |
| 17. | Find all solutions of the congruence $9 x \equiv 6(\bmod 15)$. | CO2 | K3 |
| 18. | State and prove Gauss Lemma. | CO3 | K3 |
| 19. | Show that if $f(n)$ be a multiplicative function and $F(n)=\sum_{d \mid n} f(d)$ then $F(n)$ is multiplicative . | CO4 | K4 |
| 20. | Estimate all solutions of $12 x+18 y=30$. | CO5 | K3 |

# G.T.N. ARTS COLLEGE (Autonomous) <br> (Affiliated to Madurai Kamaraj University)||(Accredited by NAAC with 'B' Grade) <br> END SEMESTER EXAMINATION - NOVEMBER 2021 <br> (UNDER OUTCOME BASED EDUCATION (OBE) PATTERN) <br> Programme: M.Sc., MATHEMATICS <br> Course Title: Mathematics for Competitive <br> Course Code: 20PMAN31 Examinations <br> Date: 08.02.2022 <br> Time: 10 am To 1 pm <br> Max. Marks: 60 

Qn.
Section-A
Answer ALL the Questions

1. Ravi's age after 15 years will be 5 times his age 5 years back. What is the present age of Ravi?
a) 7
b) 8
c) 9
d) 10
2. 

Find the odd man out of $2,5,10,50,500,5000$ ?
a) 0
b) 5
c) 10
d) 5000
3. A can do a certain work in 12 days. B is $60 \%$ more efficient than A. How CO 2 K1 many days does $B$ alone take to do the same job?
a) 6 days
b) $6 \frac{1}{2}$ days
c) 7 days
d) $7 \frac{1}{2}$ days
4. A car moves at the speed of $80 \mathrm{~km} / \mathrm{hr}$. What is the speed of the car in CO 2 K 2 meters per second?
a) $8 \mathrm{~m} / \mathrm{sec}$
b) $20 \frac{1}{9} \mathrm{~m} / \mathrm{sec}$
c) $22 \frac{2}{9} \mathrm{~m} / \mathrm{sec}$
d) $22 \mathrm{~m} / \mathrm{sec}$
5. What is $25 \%$ of $25 \%$ equal to?
a) 0.00625
b) 0.0625
c) 0.625
d) 6.25
6. Mean proportional between $a$ and $b$ is $\qquad$ .
a) $a b$
b) $a+b$
c) $a-b$
d) $\sqrt{a b}$
7. A man invests in a $16 \%$ stock at 128 . The interest obtained by him is
$\qquad$ .
a ) $8 \%$
b) $12 \%$
c) $12.5 \%$
d) $16 \%$
8. A bag contains nine yellow balls, three white balls and four red balls. In how many ways can two balls be drawn from the bag?
a) $9 C_{2}$
b) $3 C_{2}$
c) $16 C_{2}$
d) $12 C_{2}$
9. If at least $60 \%$ marks in Physics are required for pursuing higher studies in Physics, how many students will be eligible to pursue higher studies in Physics?
a) 27
b) 32
c) 34
d) 41
10. What is an approximate percentage decrease in production from 1993 to CO5 1994 ?
a) $87.5 \%$
b) $37.5 \%$
c) $9.09 \%$
d) None of these

Qn.

## No.

## Section - B

$[5 \times 4=20]$

## Answer ALL the Questions

11.a) Rohit was 4 times as old as his son 8 years ago. After 8 years, Rohit will be twice as old as his son. What are their present ages?
[OR]
b) A cricketer has a certain average for 10 innings. In the eleventh inning, he CO1 K3 scored 108 runs, thereby increasing his average by 6 runs. What is the new average of the cricketer?
12.a) While covering a distance of 24 km , a man noticed that after walking for 1

CO 2
 Level

CO1 K3 K2 hour and 40 minutus, the distance covered by him was $5 / 7$ of the remaining distance. What was his speed in meter per second?
[OR]
b) Two pipes A and B can fill a tank in 24 min and 32 min respectively. If CO 2K2 both the pipes are opened simultaneously, after how much time B should be closed so that the tank is full in 18 minutes?
13.a) The value of a machine depreciates at the rate of $10 \%$ per annum. If its present value is Rs. $1,62,000$, what will be its worth after 2 years? What was the value of the machine 2 years ago?

## [OR]

b) By mixing two brands of tea and selling the mixture at the rate of Rs. 117 per kg , a shopkeeper makes a profit of $18 \%$. If to every 2 kg of one brand costing Rs. 200 per kg, 3 kg of the other brand is added, then how much per kg does the other brand cost?
14.a) Which is better investment, $12 \%$ stock at par with an income tax at the rate of 5 paise per rupee or $14 \frac{2}{7} \%$ stock at 120 free from income tax?
[OR]
b) A committee has 5 men and 6 women. What are the number of ways of selecting 2 men and 3 women from the given committee?
15.a)

Study the following table and answer the questions based on it.

| Year Expenditures of a Company (in Lakh Rupees) per Annum Over the given Years. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Item of Expenditure |  |  |  |  |
| 1998 | Salary | Fuel and Transport | Bonus | Interest on Loans | Taxes |
| 1999 | 342 | 98 | 3.00 | 23.4 | 83 |
| 2000 | 324 | 112 | 2.52 | 32.5 | 108 |
| 2001 | 336 | 101 | 3.84 | 41.6 | 74 |
| 2002 | 420 | 133 | 3.68 | 36.4 | 88 |

1. What is the average amount of interest per year which the company had to pay during this period?
2. The total amount of bonus paid by the company during the given period is approximately what percent of the total amount of salary paid during this period?
3. Total expenditure on all these items in 1998 was approximately what percent of the total expenditure in 2002 ?
4. The total expenditure of the company over these items during the year 2000 is?
b) The circle-graph given here shows the spendings of a country on various sports during a particular year. Study the graph carefully and answer the questions given below it.

5. How much percent more is spent on Hockey than that on Golf?
6. If the total amount spent on sports during the year be Rs. $1,80,00,000$.

Find the amount spent on Basketball exceeds on Tennis?
3. How much percent less is spent on Football than that on Cricket?
4. If the total amount spent on sports during the year was Rs. 2 crores, What is the amount spent on Cricket and Hockey together?

Qn.

## Section-C

$[3 \times 10=30]$
No.

## Answer ANY THREE Questions

16. Tanya's grandfather was 8 times older to her 16 years ago. He would be 3 times of her age 8 years from now. Eight years ago, What was the ratio of Tanya's age to that of her grandfather?
17. Two pipes can fill a cistern in 14 hours and 16 hours respectively. The pipes are opened simultaneously and it is found that due to leakage in the bottom it took 32 minutes more to fill the cistern. When the cistern is full, in what time will the leak empty it?
18. Mr. Jones gave $40 \%$ of the money he had, to his wife. He also gave $20 \%$ of CO3 K3 the remaining amount to each of his three sons. Half of the amount now left was spent on miscellaneous items and the remaining amount of Rs. 12,000 was deposited in the bank. How much money did Mr. Jones have initially?
19. A man sells Rs. 5000 , $12 \%$ stock at 156 and invests the proceeds party in 8 $\%$ stock at 90 and $9 \%$ stock at 108 . He hereby increases his income by Rs. 70. How much of the proceeds were invested in each stock?
20. The pie-chart provided below gives the distribution of land (in a village) under various food crops. Study the pie-chart carefully and answer the questions that follow.

## DISTRIBUTION OF AREAS (IN ACRES) UNDER VARIOUS FOOD CROPS



1) Which combination of three crops contribute to $50 \%$ of the total area under the food crops?
2) If the total area under jowar was 1.5 million acres, then what was the area (in million acres) under rice?
3) If the production of wheat is 6 times that of barley, then what is the ratio between the yield per acre of wheat and barley?
4) If the yield per acre of rice was $50 \%$ more than that of barley, then the production of barley is what percent of that of rice?
5) If the total area goes up by $5 \%$, and the area under wheat production goes up by $12 \%$, then what will be the angle for wheat in the new pie-chart?
